Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

By HospiMedica International staff writers
Posted on 28 Mar 2024

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an individual's health, predicting diseases early, tailoring treatments, and managing chronic conditions more effectively. Yet, challenges like sweat or air influencing long-term signal stability have hampered their performance. Now, new super wearable electronics that are lightweight, stretchable, and also boast a 400-fold increase in sweat permeability could pave the way for reliable long-term monitoring of biosignals by biomedical devices.

Scientists at City University of Hong Kong (CityUHK, Hong Kong) have developed a universal method for creating super wearable electronics that enable gas and sweat permeability. This breakthrough overcomes a significant hurdle for wearable medical devices by ensuring that monitoring of vital signs remains uninterrupted and comfortable, even in the presence of sweat. The team's method is based on material processing, device design, and system integration, resulting in wearable electronics that incorporate a nature-inspired three-dimensional liquid diode (3D LD). This design allows liquids to flow spontaneously in a specific direction, thanks to surface structures that encourage the movement of sweat away from the skin.

By applying a 3D spatial liquid manipulation approach, the researchers have managed to build fully integrated permeable electronics that match the circuitry and functionality to state-of-the-art wearable devices, enabling extraordinary breathability. The 3D LD does not depend on unique materials alone but also adopts an in-plane liquid transport layer termed horizontal liquid diode. In the study, the device showed that it can transport sweat from the skin 4,000 times more effectively than produced by the human body. This guarantees seamless monitoring even during sweating conditions, thereby resolving the issue of signal disruption due to sweat accumulation at the device-skin interface. Thanks to its thin, lightweight, soft, and stretchable features, the device also showed exceptional compatibility with the human body by adhering strongly to the skin. The study also revealed a comfortable and stable interface between the device and the skin, resulting in high-quality signals. Currently, the team is conducting advanced clinical trials to validate the effectiveness of their technology in real-world scenarios.

“Our findings provide fluid manipulation and system integration strategies for the soft, permeable wearables,” said CityUHK Professor Yu Xinge who led the study. “We have successfully applied this technology to both advanced skin-integrated electronics and textile-integrated electronics, achieving reliable health monitoring over a weeklong duration.”

Related Links:
CityUHK

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
X-Ray QA Meter
Piranha CT
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get complete access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The Nami S miniaturized ultrasonic scalpel enables faster and safer RAS (Photo courtesy of Nami Surgical)

Miniaturized Ultrasonic Scalpel Enables Faster and Safer Robotic-Assisted Surgery

Robot-assisted surgery (RAS) has gained significant popularity in recent years and is now extensively used across various surgical fields such as urology, gynecology, and cardiology. These surgeries, performed... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.