Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Innovative Device Measures Glucose in Saliva for More Convenient Diabetes Monitoring

By HospiMedica International staff writers
Posted on 30 Aug 2023
Print article
Image: The new sensor can measure glucose levels in saliva (Photo courtesy of KAUST)
Image: The new sensor can measure glucose levels in saliva (Photo courtesy of KAUST)

Diabetes arises when the body fails to regulate its blood glucose levels. Elevated glucose levels can lead to cardiovascular disease and other ailments, making it essential for individuals with diabetes to keep their blood glucose within moderate ranges. The conventional method for monitoring blood glucose in people with diabetes involves using devices that analyze a droplet of blood obtained through finger pricking multiple times daily. Recently, implanted sensors have enabled continuous glucose monitoring without the discomfort of pinpricks, but these devices might be less accurate for lower glucose levels and are not approved for children. A more convenient alternative could be salivary testing, as saliva correlates with blood glucose levels. However, glucose concentrations in saliva are much lower than in blood, posing challenges for accurate measurement without advanced laboratory equipment.

Researchers at King Abdullah University of Science and Technology (KAUST, Saudi Arabia) have now created a prototype sensor capable of measuring glucose levels in saliva. This innovation could eventually offer a simple, swift, and painless way for individuals to monitor their diabetes. The KAUST team devised a remarkably sensitive glucose detector built on a thin-film transistor. These compact, lightweight, and energy-efficient devices could be produced en masse as affordable disposable sensors. The transistor features thin layers of semiconductors, including indium oxide and zinc oxide, along with the enzyme glucose oxidase on top. When a saliva sample is applied to the sensor, the enzyme converts any glucose present into D-gluconolactone and hydrogen peroxide. The electrical oxidation of hydrogen peroxide generates electrons that enter the semiconductor layers, modifying the current flowing through the semiconductors. This change reflects the glucose concentration in the sample.

The researchers evaluated their device using human saliva samples with varying glucose levels and also analyzed saliva from fasting volunteers (since saliva glucose levels might not align with blood glucose levels immediately after eating). They discovered that the device accurately measured a broad range of glucose concentrations in under a minute. Importantly, the sensor remained unaffected by other molecules in saliva, including sugar derivatives like fructose and sucrose. Although the device's sensitivity decreased over time, it maintained good performance even after two weeks of storage at room temperature. The team is presently working on an array of transistor sensors that could simultaneously detect multiple metabolites in saliva.

“An easy-to-use noninvasive glucose-measuring device using saliva as a medium could be life-changing for millions of patients worldwide,” said research team member Abhinav Sharma.

“The development of portable sensor arrays that can be integrated with a smartphone is a potential future direction for research,” added Thomas Anthopoulos, who led the research team.

Related Links:
KAUST 

Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Electrosurgical Unit
ARC 303

Print article

Channels

Critical Care

view channel
Image: A full readout from the new AI algorithm that helps read EEGs (Photo courtesy of Duke University)

AI Doubles Medical Professionals’ Accuracy in Reading EEG Charts of ICU Patients

Electroencephalography (EEG) readings are crucial for detecting when unconscious patients may be experiencing or are at risk of seizures. EEGs involve placing small sensors on the scalp to measure the... Read more

Surgical Techniques

view channel
Image: GI procedures can produce dangerous levels of smoke (Photo courtesy of 123RF)

Study Warns Against Dangerous Smoke Levels Produced During Endoscopic Gastrointestinal Procedures

Healthcare professionals involved in certain smoke-generating endoscopic gastrointestinal procedures, such as those using electrical current to excise polyps, may be exposed to toxin levels comparable... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.