We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Copper Surfaces Can Destroy MRSA Pathogen Spread

By HospiMedica International staff writers
Posted on 21 Jun 2016
Print article
Image: Dr. Sarah Warnes and Professor Bill Keevil (Photo courtesy of the University of Southampton).
Image: Dr. Sarah Warnes and Professor Bill Keevil (Photo courtesy of the University of Southampton).
A new study demonstrates that methicillin-resistant Staphylococcus aureus (MRSA) bacteria die on copper surfaces by a multifaceted attack of copper ions and reactive oxygen species (ROS).

Researchers at the University of Southampton (United Kingdom) conducted a study to examine the efficacy of copper in combating contamination of surfaces by MRSA via fingertips, which dry rapidly and may be overlooked by cleaning regimes, unlike visible droplets. The bacteria can be deposited on a surface by one person touching it, or via contaminated body fluids, and subsequently picked up and spread to other surfaces, potentially causing thousands of infections. In a previous study by the same researchers, a simulated droplet contamination of MRSA--such as in a sneeze or a splash—was killed on copper and copper alloy surfaces within 90 minutes.

The new study showed that the elimination of contamination of surfaces via finger was even faster, with a 5-log reduction of a hardy epidemic strain of MRSA (EMRSA-16) observed following 10 minutes of contact with copper, and 4-log reduction observed on copper nickel and cartridge brass alloys within 15 minutes. The researchers also found that bacterial respiration was compromised on the copper surfaces, and that superoxide ROS were generated as part of the killing mechanism. The study was published in the April 2016 issue of Applied and Environmental Microbiology.

“Our latest research shows that in simulated fingertip contamination of surfaces with millions of MRSA or MSSA, the cells can remain alive for long periods on non-antimicrobial surfaces – such as stainless steel – but are killed even more rapidly than droplet contamination on copper and copper alloys,” said lead author Sarah Warnes, PhD. “Exposure to copper damages the bacterial respiration and DNA, resulting in irreversible cell breakdown and death.”

“It’s important to understand the mechanism of copper’s antimicrobial efficacy because microorganisms have evolved various mechanisms to convey resistance to disinfectants and antibiotics,” added study co-author Professor Bill Keevil, PhD. “Our work shows that copper targets various cellular sites, not only killing bacterial and viral pathogens, but also rapidly destroying their nucleic acid genetic material so there is no chance of mutation occurring and nothing to pass on to other microbes, a process called horizontal gene transfer. Consequently, this helps prevent breeding the next generation of superbug.”

Related Links:
University of Southampton

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Silver Member
ECG Management System
NEMS-Q

Print article

Channels

Surgical Techniques

view channel
Image: The living replacement knee will be tested in clinical trials within five years (Photo courtesy of ARPA-H)

Living Knee Replacement to Revolutionize Osteoarthritis Treatment

Osteoarthritis is the most prevalent type of arthritis, characterized by the progressive deterioration of cartilage, or the protective tissue covering the bone ends, resulting in pain, stiffness, and impaired... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.