We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Video System Monitors Patients’ Vital Signs

By HospiMedica International staff writers
Posted on 22 Apr 2015
Print article
Image: Subtle changes in facial skin color highlighted on the app. (Photo courtesy of Mayank Kumar/Rice University).
Image: Subtle changes in facial skin color highlighted on the app. (Photo courtesy of Mayank Kumar/Rice University).
A new camera-based estimation algorithm uses facial video to monitor a patient’s vital signs, adjusting for skin tones, lighting, and movement.

DistancePPG, developed by researchers at Rice University (Houston, TX, USA), uses photoplethysmography (PPG) to measure a patient’s pulse and breathing by analyzing subtle changes in skin color over time, correcting for low-light conditions, dark skin tones, and movement. The system is based on algorithms that combine skin-color change signals from different tracked regions of the face using a weighted average, where the weights depend on the blood perfusion and incident light intensity in the region.

One algorithm works by averaging skin-color change signals from different areas of the face; the other algorithm tracks the patient’s nose, eyes, mouth, and whole face. The combination improves the signal-to-noise ratio (SNR) of camera-based estimates of vital signs. The gains in SNR translate into reduction of the error in vital sign estimation, and thus expand the scope of camera-based vital sign monitoring to potentially challenging scenarios. The study describing DistancePPG is published in the May 2015 issue of Biomedical Optics Express.

“Our key finding was that the strength of the skin-color change signal is different in different regions of the face, so we developed a weighted-averaging algorithm,” said lead author PhD graduate student in electrical engineering Mayank Kumar. “It improved the accuracy of derived vital signs, rapidly expanding the scope, viability, reach and utility of camera-based vital-sign monitoring.”

The researchers claim that the system will allow doctors to diagnose patients from a distance, with special attention paid to those in low-resource settings. They also expect the software will soon find its way to mobile smartphones, tablets, and computers, so that people can reliably measure their own vital signs whenever and wherever they choose.

Related Links:

Rice University


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Medical Gas Blender
BlenderBuddy 1

Print article

Channels

Critical Care

view channel
Image: Researchers have developed an advanced shear-thinning hydrogel for aneurysm repair (Photo courtesy of TIBI)

New Hydrogel Features Enhanced Capabilities for Treating Aneurysms and Halting Progression

Aneurysms can develop in blood vessels in different body areas, often as a result of atherosclerosis, infections, inflammatory diseases, and other risk factors. These conditions lead to chronic inflammation,... Read more

Surgical Techniques

view channel
Image: The living replacement knee will be tested in clinical trials within five years (Photo courtesy of ARPA-H)

Living Knee Replacement to Revolutionize Osteoarthritis Treatment

Osteoarthritis is the most prevalent type of arthritis, characterized by the progressive deterioration of cartilage, or the protective tissue covering the bone ends, resulting in pain, stiffness, and impaired... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.