We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Stretchy Circuits Foretell Future of Wearable Electronics

By HospiMedica International staff writers
Posted on 29 Jun 2016
Print article
Image: The new integrated circuits, fabricated in interlocking segments (Photo courtesy of Yei Hwan Jung, Juhwan Lee/ WISC).
Image: The new integrated circuits, fabricated in interlocking segments (Photo courtesy of Yei Hwan Jung, Juhwan Lee/ WISC).
A new wave of wearable integrated circuits could drive the Internet of Things (IoT) and a much more connected, high-speed wireless world.

Developed by researchers at the University of Wisconsin (WISC; Madison, USA) and the University of Electronic Science and Technology (UESTC; Chengdu, China), the powerful, stretchable, highly efficient integrated epidermal electronic circuits could allow health care staff in an intensive care unit (ICU) to monitor patients remotely and wirelessly. What makes the stretchable integrated circuits powerful is their unique structure, which contains, essentially, two ultra-tiny intertwining power transmission lines in repeating S-curves.

The serpentine shape, formed in two layers with segmented metal blocks, like a three dimensional (3D) puzzle, gives the transmission lines the ability to stretch without affecting their performance. It also helps shield the lines from outside interference while confining the electromagnetic waves flowing through them, resulting in an almost complete elimination of current loss. The advance could allow health care staff to monitor patients remotely and wirelessly, increasing patient comfort by decreasing the customary tangle of cables and wires.

Unlike other stretchable transmission lines, whose widths can approach 640 micrometers (0.64 millimeters), the new stretchable integrated circuits are just 25 micrometers (0.025 millimeters) thick, and can operate at radio frequency levels up to 40 gigahertz, a microwave frequency range that falls directly in the 5G range, which is slated to accommodate a growing number of cellphone users that can provide notable increases in data speeds. The study was published on May 27, 2016, in Advanced Functional Materials.

“This is a platform; this opens the door to lots of new capabilities. We’ve found a way to integrate high-frequency active transistors into a useful circuit that can be wireless,” said senior author Professor Zhenqiang “Jack” Ma, PhD, the University of Wisconsin. “These concepts form the basic elements used in the design of stretchable microwave components, circuits, and subsystems performing important radio frequency functionalities, which can apply to many types of stretchable bioelectronics for radio transmitters and receivers.”

Related Links:
University of Wisconsin
University of Electronic Science and Technology
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
EEG System
GRAEL LT

Print article

Channels

Critical Care

view channel
Image: Researchers have developed a novel risk score for cardiovascular complications after bone marrow transplant (Photo courtesy of 123RF)

Novel Tool Predicts Cardiovascular Risks after Bone Marrow Transplantation

Every year, thousands of people undergo bone marrow transplants to potentially cure serious diseases like leukemia, lymphoma, and immune deficiency disorders. While these transplants can be lifesaving,... Read more

Surgical Techniques

view channel
Image: The Early Bird Bleed Monitoring System provides visual and audible indicators of the onset and progression of bleeding events (Photo courtesy of Saranas)

Novel Technology Monitors and Lowers Bleeding Complications in Patients Undergoing Heart Procedures

Bleeding complications at the femoral access site can significantly hamper recovery, affecting the success of procedures, patient satisfaction, and overall healthcare costs. It is crucial for surgeons... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.