We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




3D Printing Supports Accurate Radiation Therapy Delivery

By HospiMedica International staff writers
Posted on 08 Jul 2015
Print article
Image: Example of bolus printed to conform to the nose of a phantom (Photo courtesy of Stony Brook Medicine).
Image: Example of bolus printed to conform to the nose of a phantom (Photo courtesy of Stony Brook Medicine).
A new study demonstrates how an inexpensive three dimensional (3-D) printer can be used to manufacture a patient-specific bolus for external beam therapy.

Researchers at Stony Brook Medicine (NY, USA) conducted a project to design and print a bolus using a treatment planning system and an inexpensive (USD 3,000) 3-D printer. The bolus is a device used in radiation therapy (RT) placed directly on the patient’s skin, and is intended to shape the desired RT dose to surface anatomy, thus conforming and containing the planning target volume (PTV) dose while delivering minimal radiation to adjacent underlying critical structures and normal tissues.

The researchers began the design process using a phantom as the test subject. After a computerized tomography (CT) scan was acquired, the data was exported to the Varian (Palo Alto, CA, USA) Eclipse treatment planning system. Once a satisfactory bolus design was determined, the structure set was exported to 3DSlicer, a 3-D modeling software that is maintained as open source. The stereolithography (STL) files were interpreted by printer software, and instructions were sent to an Airwolf (Costa Mesa, CA, USA) 3-D printer.

The researchers tested different materials—including acrylonitrile butadiene styrene and polylactic acid—as the substrate. Dose plane comparisons were conducted for each material using the phantom model and photographic film to verify accurate treatment planning. They were also able to verify accurate treatment planning using gamma analysis, and found that with gamma criteria of 5% dose difference and 3 mm distance-to-agreement (DTA) leeway, they achieved 95% points passing. The study was published in the May-June 2015 issue of the Journal of Applied Clinical Medical Physics (JACMP).

“We are confident that we can accurately model this printing material in our treatment planning system for all energies in photon and electron beams,” concluded lead author Sarah Burleso, PhD, and colleagues of the department of radiation oncology. “In the event the patient cannot have bolus materials placed on their skin for molding, we can print a 3D positive mold of the patient’s treatment area, molding the bolus to the replica instead. This process of printing our own bolus streamlines patient care, minimizes patient involvement, and maintains quality treatments.”

Related Links:

Stony Brook Medicine
Varian
3DSlicer



Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Harness System
Neo-Restraint

Print article

Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.