Features | Partner Sites | Information | LinkXpress
Sign In
Advantech Europe

Magnetic Hearing Device Avoids Skin Penetration

By HospiMedica International staff writers
Posted on 02 Jan 2014
Image: The Baha 4 Attract system (Photo courtesy of Cochlear).
Image: The Baha 4 Attract system (Photo courtesy of Cochlear).
A novel cochlear hearing device creates a pathway for bone conduction hearing, without the need for an abutment that pierces the skin.

The Baha 4 Attract system consists of a titanium implant placed in the mastoid process behind the ear, which allows for transmission of sound vibrations to the inner ear. An advanced sound processor, which uses a front microphone to pick up sounds facing the user and a secondary microphone to filter surrounding noise, sends vibrations to an external magnet, which are transmitted to the internal magnet, which rests under the skin. The internal magnet then relays the vibrations to the titanium implant that is placed in the bone, which in turn transmits the sound waves to the inner ear.

The sound processor uses the Ardium platform, which is three times faster and has eight times more memory than previous generation processors. The added computing power is used to drive sophisticated sound technologies, together with true 2.4 GHz digital wireless connectivity and remote controls. The Baha 4 Attract system is a product of Cochlear (Centennial, CO, USA), and has been approved by the US Food and Drug Administration (FDA).

“The Baha 4 Attract System sets new standards in simplicity, comfort, and hearing performance for magnetic bone conduction implant systems,” said Chris Smith, president of Cochlear. “We are pleased to be bringing this new hearing option to patients who want to enjoy the benefits of the Baha System without a skin penetrating abutment. Cochlear is dedicated to being a leader in bone conduction and this important milestone further emphasizes our commitment to continuing our legacy in innovation.”

In a normal ear, sound vibrations in the air lead to resonant vibrations of the basilar membrane inside the cochlea. The movement of hair cells, located all along the basilar membrane, creates an electrical disturbance that can be picked up by the surrounding nerve cells. The brain is able to interpret the nerve activity to determine which area of the basilar membrane is resonating, and therefore what sound frequency is being heard. The cochlear implant bypasses the hair cells and stimulates the cochlear nerves directly using electrical impulses. This allows the brain to interpret the frequency of sound as it would if the hair cells of the basilar membrane were functioning properly.

Related Links:



Critical Care

view channel
Image: The Evzio device and trainer (Photo courtesy of kaléo).

“Rescue Pen” Averts Opioid Overdose Risk

A novel autoinjector formulation of naloxone helps reduce the problem of addiction and abuse of prescription opioids. The Evzio pen is modeled on similar devices used deliver epinephrine to patients... Read more

Women's Health

view channel

Low-Dose Aspirin Will Not Prevent Pregnancy Loss

A new study reveals that in general, low-dose aspirin is not beneficial for future pregnancy outcomes in women with prior pregnancy loss. Researchers at the University at Buffalo (NY, USA) conducted a placebo-controlled trial that included 1,228 women (aged 18-40 years) who were attempting to become pregnant.... Read more


view channel

Infusion Pumps Propel Global Market Upwards

The global infusion pumps market is expected to grow at a compound annual growth rate (CAGR) of 5.3%, reaching an estimated value of USD 7.8 billion in 2019. These are the latest findings of Transparency Market Research (Albany, NY, USA), a global market intelligence company. Infusion pumps are used to deliver therapeutic... Read more
Copyright © 2000-2014 Globetech Media. All rights reserved.