Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

By HospiMedica International staff writers
Posted on 17 May 2024
Print article
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status. This implantable microsensor system, designed for patients with cardiovascular diseases, aims to provide a versatile platform that can assess both hemodynamic and biochemical parameters.

The EU-funded project IV-Lab (an acronym for In-vessel implantable smart sensing device for personalized medicine) coordinated by the Italian Institute of Technology (IIT, Genoa, Italy) is developing the miniaturized sensing device for continuous monitoring of different parameters related to blood vessel health and patient well-being. Unlike existing devices, this new sensor will integrate multiple sensors within a small platform, only 1-2 cm long and 2-4 mm in diameter. Advanced fabrication techniques are critical to this integration, allowing for the microscale fabrication of sensors and their subsequent transfer, assembly, and connection onto a support frame. These sensors will measure parameters such as blood pressure, vessel deformation, oximetry, hematocrit, and specific cardiovascular biomarkers. The key aim is to equip physicians with essential data remotely to enable quick and early interventions for preventing heart failures.

The system, once implanted, will connect to an external data collection and communication system that can operate through standard wireless technology or even a smartphone for asynchronous on-demand monitoring. Its tiny size is designed to be easily implanted via catheterization in a peripheral vein. Part of the project is devoted to evaluating the performance of the developed prototype through laboratory testing, with a strong emphasis on biocompatibility and other medical considerations. Going forward, the system could potentially monitor disease progression and outcomes, thus enabling doctors to provide timely and personalized treatments. The researchers envision a future where the implanted micro-sensor system is fully integrated into cloud networks, allowing artificial intelligence software to analyze data from multiple sensors. This integration would alert medical professionals to any abnormal readings, enabling them to initiate preventive protocols for various diseases effectively.

“The device will find important applications in the field of cardiovascular disease, in particular in those patients in which the detection of hemodynamic behavior and specific biomarkers could reduce the rehospitalization and mortality, such as heart failure or coronary restenosis after stent implantation,” said Virgilio Mattoli, IIT researcher and IV-LAB coordinator.

Related Links:
Italian Institute of Technology

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Autopsy System
CleanCut CNS3

Print article

Channels

Critical Care

view channel
Image: Researchers have made significant advances in ingestible microbiome sampling pill technology (Photo courtesy of Tufts University)

Ingestible Microbiome Sampling Pill to Help Diagnose Wide Range of Health Conditions

The healthy human gut is home to more than 1,000 species of bacteria, most of which play a beneficial role in digestion and protecting against disease. When the natural balance of these microbes is disrupted,... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.