We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Investigators Review Biodetection Technologies

By HospiMedica staff writers
Posted on 14 Mar 2007
Print article
In an effort to detect biological threats quickly and accurately, a number of detection technologies have been developed. Rapid and efficient sensors are essential for effective defense against the emerging threat of bioterrorism and biological warfare.

Researchers from Lawrence Livermore National Laboratory (LLNL; Livermore, CA, USA) reviewed several of the latest technologies in the February 2007 issue of the British journal The Analyst, which appears online. This review article describes several recent immunosensing advances that are relevant to biothreat detection. These highly diverse examples are intended to demonstrate the breadth of these immunochemical sensing systems and platforms while highlighting those technologies that are suitable for pathogen detection.

It's important to provide a summary of the latest technologies and approaches for sensing systems and platforms that could lead to bioagent detectors for responders to use in the field, said LLNL's lead author Jeffrey Tok. Other authors include Nicholas Fischer and Theodore Tarasow of LLNL's BioSecurity and Nanosciences Laboratory.

One technique, described by Dr. Tok and colleagues, involves using a barcode system, similar to the barcodes used on retail products, to detect biological agents in the field. Nanowires built from sub-micrometer layers of different metals, including gold, silver, and nickel, are able to act as 'barcodes' for detecting a variety of pathogens, such as anthrax, smallpox, ricin, and botulinum toxin. The approach could simultaneously identify multiple pathogens via their unique fluorescent characteristics.

Another detection strategy involves the development of an electrical current-based readout of the nanowires for protein and virus sensing. The wires are arranged as field-effect transistors (FETs), where slight variations at the surface produce a change in conductivity. Developers of this technology predict that a high-density nanowire-circuit array geared toward pathogen detection could be built on a large scale suitable for biosecurity surveillance.

Physical, chemical, and optical properties that can be tuned to detect a particular bioagent are the key to microbead-based immunoassay sensing systems. A unique spectral signature or fingerprint can be tied to each type of bead. Beads have been joined with antibodies to specific biowarfare agents. This method has been demonstrated in the autonomous pathogen detection system (APDS), a technology developed by Lawrence Livermore researchers. APDS contains an aerosol collector to constantly 'inhale' particles from its surrounding environment for analysis.

Microarray-based immunoassay sensing approaches can be used to detect bacteria, such as the E coli recently found in spinach and other fresh-packed greens. This approach can differentiate pathogens from harmless bacteria. In an analogous technique called aptamer microarray, short single strand chains of DNA (less than 100 nucleotides) are developed that bind to target molecules and fold into complex structures. The folding event results in an easy-to-read electrical charge. This binding-induced signaling strategy is particularly well suited for sensing in complex samples.

In a whole-cell-based immunoassay sensing system, an engineered B lymphocyte cell in which both pathogen-sensing membrane-bound antibodies and an associated light-emitting reporting system are all expressed in vivo. The B lymphocyte cell-based sensing system, termed Canary, centers on an easily expressed calcium-sensitive bioluminescent protein from the Aequoria victoria jellyfish. When exposed to targeted biowarfare compounds, an increase in photons was observed within the B lymphocyte cells in a matter of seconds. The photon changes can be easily detected using an inexpensive optical system.

The ability to miniaturize and adapt traditional bench-top immunoassay protocols to a fully automated micro-or nano-fluidic chip holds tremendous promise to enable multiplex, efficient, cost-effective, and accurate pathogen sensing systems for both biodefense and medical applications, Dr. Tok said.


Related Links:
LLNL
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Heart-Lung Machine
HL 40

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Surgical Techniques

view channel
Image: NTT and Olympus have begun the world\'s first joint demonstration experiment of a cloud endoscopy system (Photo courtesy of Olympus)

Cloud Endoscopy System Enables Real-Time Image Processing on the Cloud

Endoscopes, which are flexible tubes inserted into the body's natural openings for internal examination and biopsy collection, are becoming increasingly vital in medical diagnostics. Their minimal invasiveness... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.