We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Vision-Correcting Display Could Make Glasses Redundant

By HospiMedica International staff writers
Posted on 17 Aug 2014
Print article
Image: The deconvolution computational light field display (Photo courtesy of Fu-Chung Huang / Berkeley).
Image: The deconvolution computational light field display (Photo courtesy of Fu-Chung Huang / Berkeley).
An innovative computational light field display configuration could one day obviate the need for glasses when using digital displays.

Researchers at the University of California Berkeley (USA) are developing computer algorithms to compensate for an individual's visual impairment, creating vision-correcting displays that enable users to see text and images clearly without wearing eyeglasses or contact lenses. The algorithm works by adjusting the intensity of each direction of light that emanates from a single pixel in an image, based upon a user's specific visual impairment. To do so, a printed pinhole screen is sandwiched between two layers of clear plastic to enhance image sharpness. The tiny pinholes are 75 micrometers each and spaced 390 micrometers apart.

In a process called deconvolution, light passes through the pinhole array in such a way that the user will perceive a sharper image. The technique essentially distorts the image so that when an intended user looks at the screen, the image will appear sharp to that particular viewer; but if someone else were to look at the image, it would look fuzzy. The technology, developed in conjunction with the Massachusetts Institute of Technology (MIT, Cambridge, USA), could potentially help hundreds of millions of people who need corrective lenses to use their smartphones, tablets, and computers.

More importantly, the displays could one day aid people with more complex visual problems that cannot be corrected by eyeglasses, known as high-order aberrations, improve visual acuity. The study describing the technology was presented at the International Conference and Exhibition on Computer Graphics and Interactive Techniques (SIGGRAPH), held during August 2014 in Vancouver (Canada).

“The significance of this project is that instead of relying on optics to correct your vision, we use computation. This is a very different class of correction, and it is nonintrusive,” said lead author Fu-Chung Huang, PhD. “In the future, we also hope to extend this application to multi-way correction on a shared display, so users with different visual problems can view the same screen and see a sharp image.”

“People with higher order aberrations often have irregularities in the shape of the cornea, and this irregular shape makes it very difficult to have a contact lens that will fit,” added senior author Prof. Brian Barsky, PhD. “In some cases, this can be a barrier to holding certain jobs because many workers need to look at a screen as part of their work. This research could transform their lives, and I am passionate about that potential.”

Related Links:

University of California Berkeley
Massachusetts Institute of Technology


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Medical Oxygen Analyzer
MAXO2+AE

Print article

Channels

Critical Care

view channel
Image: Researchers have developed an advanced shear-thinning hydrogel for aneurysm repair (Photo courtesy of TIBI)

New Hydrogel Features Enhanced Capabilities for Treating Aneurysms and Halting Progression

Aneurysms can develop in blood vessels in different body areas, often as a result of atherosclerosis, infections, inflammatory diseases, and other risk factors. These conditions lead to chronic inflammation,... Read more

Surgical Techniques

view channel
Image: The living replacement knee will be tested in clinical trials within five years (Photo courtesy of ARPA-H)

Living Knee Replacement to Revolutionize Osteoarthritis Treatment

Osteoarthritis is the most prevalent type of arthritis, characterized by the progressive deterioration of cartilage, or the protective tissue covering the bone ends, resulting in pain, stiffness, and impaired... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.