We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




3D-Printing Technique Fabricates Microphysiological Devices

By HospiMedica International staff writers
Posted on 09 Nov 2016
Print article
Image: Close up of 3D printer printing heart-on-a-chip MPD (Photo courtesy of Harvard University).
Image: Close up of 3D printer printing heart-on-a-chip MPD (Photo courtesy of Harvard University).
Multi-material three-dimensional (3D) printing may one day be used to design organs-on-chips that match the properties of a specific disease, or even an individual patient’s cells.

Researchers at Harvard University (Cambridge, MA, USA) have developed a new technique to fabricate instrumented cardiac microphysiological devices (MPDs) that uses a mix of six functional inks that are based on piezo-resistive, high-conductance, biocompatible soft materials. By using 3D printing, the researchers were able to print a physio-mimetic, laminar cardiac tissue MPD that integrates soft strain sensors into the micro-architecture of the tissue, all in a single, continuous procedure.

The chip contains multiple wells, each with separate tissues and integrated sensors, which allows the researchers to study many engineered cardiac tissues at once. To demonstrate the efficacy of the device, the researchers first validated that the embedded sensors provided non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. They then used the MPD to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks. The study was published on October 24, 2016, in Nature Materials.

“Researchers are often left working in the dark when it comes to gradual changes that occur during cardiac tissue development and maturation, because there has been a lack of easy, non-invasive ways to measure the tissue functional performance,” said lead author Johan Ulrik Lind, PhD. “These integrated sensors allow researchers to continuously collect data while tissues mature and improve their contractility. Similarly, they will enable studies of gradual effects of chronic exposure to toxins.”

“Our microfabrication approach opens new avenues for in vitro tissue engineering, toxicology, and drug screening research,” said study co-author professor of bioengineering and applied physics Kit Parker, PhD. “Translating microphysiological devices into truly valuable platforms for studying human health and disease requires that we address both data acquisition and manufacturing of our devices. This work offers new potential solutions to both of these central challenges.”

MPDs, also known as organs-on-chips, mimic the structure and function of native tissue in-vitro and have emerged as a promising alternative to traditional animal testing; but the fabrication and data collection process is expensive and laborious. Currently, these devices are built in clean rooms using a complex, multi-step lithographic process, and collecting data requires microscopy or high-speed cameras, since they do not have integrated sensors.

Related Links:
Harvard University

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
LED Phototherapy System
Bililed Mini+

Print article

Channels

Surgical Techniques

view channel
Image: LUMISIGHT and Lumicell DVS offer 84% diagnostic accuracy in detecting residual cancer (Photo courtesy of Lumicell)

Cutting-Edge Imaging Platform Detects Residual Breast Cancer Missed During Lumpectomy Surgery

Breast cancer is becoming increasingly common, with statistics indicating that 1 in 8 women will develop the disease in their lifetime. Lumpectomy remains the predominant surgical intervention for treating... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.