We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Transient Fluorescent Tattoos Mark Surgical Sites

By HospiMedica International staff writers
Posted on 05 Jan 2017
Print article
Image: A new temporary pigment marks dermal surgical sites (Photo courtesy Hsian-Rong Tseng/ CNSI).
Image: A new temporary pigment marks dermal surgical sites (Photo courtesy Hsian-Rong Tseng/ CNSI).
A new study describes a novel ink to mark surgery targets on the skin, which glows only under certain light conditions and disappears altogether after a period of time.

Developed by researchers at the California NanoSystems Institute (CNSI; Santa Barbara, CA, USA), Academia Sinica (Taipei, Taiwan), and other institutions, the time-limited pigment is based on cross-linked fluorescent supramolecular nanoparticles (c-FSNPs), which encapsulate a fluorescent conjugated polymer into a core via a supramolecular synthetic approach. The result is micrometer-sized c-FSNPs, which exhibit an ideal size-dependent intradermal retention time of up to three months.

The temporary pigment has optimized photophysical properties and intradermal retention time for successful in vivo finite tattooing. Under ambient lighting, the nanoparticles are invisible, avoiding unwanted markings on a patient's skin; but under a light at a wavelength of 465 nanometers, the pigment glows fluorescently, marking the surgical target. In addition, the inflammatory responses induced by c-FSNPs are undetectable after tattooing. The study describing the new pigment was published on November 30, 2016, in ACS Nano.

“Commercially available tattoo pigments possess several issues, which include causing poor cosmesis, being mistaken for a melanocytic lesion, requiring additional removal procedures when no longer desired, and potentially inducing inflammatory responses,” concluded senior author Hsian-Rong Tseng, PhD, of CNSI, and colleagues. “We believe that the c-FSNPs can serve as a ‘finite tattoo’ pigment to label potential malignant nonmelanoma skin cancer lesions.”

Tattooing has been utilized by the medical community for precisely demarcating anatomic landmarks, which is especially important for identifying biopsy sites of nonmelanoma skin cancer (NMSC) due to the long interval between the initial diagnostic biopsy and surgical treatment.

Related Links:
California NanoSystems Institute
Academia Sinica
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Heart-Lung Machine
HL 40

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.