We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Flexible Sensors Detect Movement in Digestive Tract

By HospiMedica International staff writers
Posted on 23 Oct 2017
Print article
Image: An ingestible capsule can help measure GI motility (Photo courtesy of MIT).
Image: An ingestible capsule can help measure GI motility (Photo courtesy of MIT).
A new study describes how an ingestible sensor could help diagnose problems caused by a slowdown of food flowing through the gastrointestinal (GI) tract.

Researchers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), and Brigham and Women’s Hospital (BWH; Boston, MA, USA) have developed an ingestible, flexible, piezoelectric device that senses mechanical deformation within the gastric cavity. The sensor is based on electronic circuits printed onto a polyimide joined to PZT--a piezolelectric material--and set between two electrodes that provide power to the sensor by using gastric acids to generate electricity.

The ingestible sensor, which measures 2 by 2.5 centimeters, can be rolled up and placed in a capsule that dissolves after being swallowed. The sensor then adheres to the stomach wall or to intestinal lining, where it measures the rhythmic contractions of the digestive tract by tracking the voltage generated when the PZT is mechanically deformed. Through external cables, the voltage data generated by the can be used to calculate how much the stomach wall is moving, as well as distinguish when food or liquid are ingested.

The capabilities of the sensor were demonstrated in both in vitro and ex vivo simulated gastric models, which were used to quantify key behaviors in the GI tract using computational modeling, and validated in ambulating swine. According to the researchers, future ingestible piezoelectric devices might safely sense mechanical variations and harvest mechanical energy inside the GI tract for diagnosis and treatment of motility disorders, as well as for monitoring ingestion in bariatric applications. The study was published on October 10, 2017, in Nature Biomedical Engineering.

“This type of sensor could make it easier to diagnose digestive disorders that impair motility of the digestive tract, which can result in difficulty swallowing, nausea, gas, or constipation,” said lead author Giovanni Traverso, MD, PhD, of MIT. “Having a window into what an individual is actually ingesting at home is helpful, because sometimes it's difficult for patients to really benchmark themselves and know how much is being consumed.”

Related Links:
Massachusetts Institute of Technology
Brigham and Women’s Hospital
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Stereotactic Ultralight System
SUSy

Print article

Channels

Surgical Techniques

view channel
Image: NTT and Olympus have begun the world\'s first joint demonstration experiment of a cloud endoscopy system (Photo courtesy of Olympus)

Cloud Endoscopy System Enables Real-Time Image Processing on the Cloud

Endoscopes, which are flexible tubes inserted into the body's natural openings for internal examination and biopsy collection, are becoming increasingly vital in medical diagnostics. Their minimal invasiveness... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.