We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Biologic-Based Materials Aid Reconstructive Surgery

By HospiMedica International staff writers
Posted on 29 Apr 2019
Print article
Image: The Restella reconstructive bioscaffold (Photo courtesy of TELA Bio).
Image: The Restella reconstructive bioscaffold (Photo courtesy of TELA Bio).
Novel reconstructive materials support soft tissues in plastic and reconstructive surgery patients requiring repair or reinforcement.

The TELA Bio (Malvern, PA, USA) Restella reconstructive bioscaffolds are based on a polymer interwoven through layers of biologic tissue in a patented "lockstitch" pattern, which creates a unique embroidered construction with controlled stretch that is highly permeable. The bioscaffolds can support a variety of surgical techniques and procedures, with an emphasis on ventral hernia repair and abdominal wall reconstruction. Restella is available in a range of sizes--up to 25×40 cm (1,000 cm2)--thicknesses, and degrees of reinforcement, and can be trimmed to size.

The sterile polymer is embedded in a biologic extracellular matrix (ECM) derived from ovine (sheep) rumen, which has been optimized in order to reduce foreign body response, minimize inflammation, and enable functional tissue remodeling through hundreds of pores that allow fluid transfer through the scaffold, with no evidence remaining of interlayer seroma after a short period of just four weeks. The interwoven polymer also helps provide tissue support, along with improved handling and load-sharing capability.

“Our success in applying the advantages of our technology platform to develop Restella reconstructive bioscaffolds is another example of TELA Bio's unique ability to bring innovation and cost savings to address a wide range of needs in surgery,” said Antony Koblish, president and CEO of TELA Bio. “These products were purposefully engineered to allow for rapid tissue integration and revascularization and biomechanical control.”

Ruminant animals such as sheep, cattle, goats, deer, and llamas have a four-chambered stomach, which include the reticulum, rumen, omasum, and abomasum. Structures in each chamber are unique, with the reticulum sporting a honeycomb pattern, the rumen characterized with thousands of papillae that increase surface area, and the omasum and abomasum with numerous folds of tissue. The rumen itself serves as a large fermentation vat in which microorganisms break down feed the animal cannot. As part of this process, they produce by-products, such as volatile fatty acids (VFAs), which the animal absorbs and uses as energy.

Related Links:
TELA Bio

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Neonatal Ventilator
Servo-n

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.