We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Magnetic Blood Filtering System Draws out Disease

By HospiMedica International staff writers
Posted on 03 Dec 2019
Print article
Image: The MediSieve magnetic blood filtering system (Photo courtesy of MediSieve)
Image: The MediSieve magnetic blood filtering system (Photo courtesy of MediSieve)
An innovative blood filtering system could draw out deadly infections such as malaria and sepsis from the body using magnets.

The MediSieve (London, United Kingdom) filtering technology works in a similar way to dialysis. Blood is taken from a patient and infused with the MediSieve magnetic particles, which attach to specific targets so that they can be subsequently captured by a magnetic filter and removed from the blood before it is pumped back into the body. Particle size, magnetic properties, and number of binding agents coating the nanoparticles are all engineered to ensure maximal capture and removal by the filter. The whole process takes around two to four hours.

“In theory, you can go after almost anything. Poisons, pathogens, viruses, bacteria, anything that we can specifically bind to, we can remove. So, it’s a very powerful potential tool,” said George Frodsham, CEO and founder of MediSieve. “When someone has a tumor, you cut it out. Blood cancer is a tumor in the blood, so why not just take it out in the same way? Now we know it’s possible; it’s just a question of figuring out some of the details.”

Blood can be repeatedly passed through the system until the target is at such a low concentration that the immune system or a short course of medication can remove it. The first disease due to be tested for device efficacy is malaria; interestingly, in this case, the first step is not necessary, as malaria targets iron-rich blood cells and consumes hemoglobin, turning it magnetic. Further trials will be conducted to see whether the nanoparticles can remove sepsis-causing bacteria and tone down the deadly immune response.

“Malaria treatment is our flagship product because the infected cells have naturally occurring magnetic properties. The malaria parasite invades the red blood cell and consumes the hemoglobin, and therefore it leaves an iron-based waste product, which it then takes inside itself. So effectively malaria parasites poop is magnetic, and then it eats its poop,” explained Mr. Frodsham. “We really feel we can have a material human impact to help those suffering the most from the disease, particularly children and pregnant women.”

Related Links:
MediSieve

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Display
i3 Series

Print article

Channels

Surgical Techniques

view channel
Image: Computational models can predict future structural integrity of a child’s heart valves (Photo courtesy of 123RF)

Computational Models Predict Heart Valve Leakage in Children

Hypoplastic left heart syndrome is a serious birth defect in which the left side of a baby’s heart is underdeveloped and ineffective at pumping blood, forcing the right side to handle the circulation to... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.