We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Finite Element Analysis Helps Predict Spinal Fractures

By HospiMedica International staff writers
Posted on 01 Jan 2020
Print article
Image:  Finite analysis can help determine cervical bone strength (Photo courtesy of SUTD)
Image: Finite analysis can help determine cervical bone strength (Photo courtesy of SUTD)
A new study introduces a novel vertebral strength assessment tool that can assist accurate prediction of osteoporotic vertebral fracture (OVF) risk.

Developed at the Singapore University of Technology and Design (SUTD) and Munich Technical University (TUM; Germany), the semi-automatic computational tool is designed to extract structural information, such as failure load, from radiological scans of patients using functional spinal units (FSUs). The calculated FSU predicted failure load was compared to the bone mineral density (BMD) values of the single central vertebra with experimentally measured failure load in order to assess finite element (FE) correlation.

To do so, the FSUs underwent clinical multi-detector computed tomography (MDCT), and BMD was then determined for the FSUs from the MDCT images of the central vertebrae. FE-predicted failure load was then calculated in the single central vertebra alone, and the entire FSUs. The results revealed that while BMD of the central vertebrae correlated significantly with experimentally measured failure load, the FE-predicted failure load of the central vertebra showed no significant correlation. However, FE-predicted failure load of the FSUs best predicted experimentally measured failure load. The study was published on December 10, 2019, in Spine.

“There is an urgent need to implement computational biomechanical analysis in the clinical scenario, since it is a powerful tool for non-invasive evaluation of bone strength,” said senior author Subburaj Karupppasamy, PhD, of the SUTD Medical Engineering and Design (MED) laboratory. “Accordingly, this work lays the foundation towards extracting valuable structural information from improved spine models, such as FSUs, in the diagnosis of osteoporosis and prediction of OVFs.”

Computational prediction of failure load through numerical simulation, known popularly as FE analysis, is a non-invasive tool for examination of the spine, which also provides a holistic quantitative evaluation of bone strength. As the spine consists of many different spinal segments, it is essential to include these all load-bearing segments when considering the structural strength of spine. FSUs have the advantage of mimicking the biomechanical requirements of the spine better than each isolated vertebral segment.

Related Links:
Singapore University of Technology and Design
Munich Technical University


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Enterprise Imaging & Reporting Solution
Syngo Carbon

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.