We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




3D Nanodevice Detects Harmful Bacteria in Blood

By HospiMedica International staff writers
Posted on 09 Apr 2020
Print article
Image: 3D nanodevice detects harmful bacteria in blood (Photo courtesy of RIT)
Image: 3D nanodevice detects harmful bacteria in blood (Photo courtesy of RIT)
A new study describes how a nanofluidic three-dimensional (3D) device stacked with magnetic beads can trap, concentrate, and retrieve E. coli from blood and plasma.

Developed at Rutgers University (Rutgers; Piscataway, NJ, USA), Tsinghua-UC Berkeley Shenzhen Institute (TBSI; China), the Rochester Institute of Technology (RIT; NY, USA), and other institutions, the inexpensive, transparent device is based on stacking magnetic beads with different sizes in order to create microscopic voids that can physically isolate bacteria. The sizes and ratio of the beads was calculated using computational fluid dynamics, 3D tomography technology, and machine learning, achieving a 86% capture efficiency with a flow rate of 50 μL/min.

By leveraging the high deformability of the device, E. coli samples can be retrieved from a bacterial suspension by applying a higher flow rate, followed by rapid magnetic separation. An on-chip 11-fold concentration factor can be achieved by inputting 1300 μL of the E. coli sample, and then concentrating it in 100 μL of buffer. The multiplexed, miniaturized, see-through device is easy to fabricate and operate, making it ideal for pathogen separation in both laboratory and in point-of-care (POC) settings. The study was published on January 15, 2020, in ACS Applied Materials & Interfaces.

“Drug-resistant bacteria have become a severe public health concern. Fortunately, this risk can be reduced via the correct use of prescriptions, and by avoiding unnecessary prescriptions, and over prescription of antibiotics,” concluded lead author Xinye Cen, PhD, of RIT, and colleagues. “In this regard, rapid isolation of the target bacteria from various samples is an essential step toward the identification of antibiotic resistance and providing early-treatment.”

Related Links:
Rutgers University
Tsinghua-UC Berkeley Shenzhen Institute
Rochester Institute of Technology


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Electric Bariatric Patient Lifter
SVBL 205

Print article

Channels

Surgical Techniques

view channel
Image: Computational models can predict future structural integrity of a child’s heart valves (Photo courtesy of 123RF)

Computational Models Predict Heart Valve Leakage in Children

Hypoplastic left heart syndrome is a serious birth defect in which the left side of a baby’s heart is underdeveloped and ineffective at pumping blood, forcing the right side to handle the circulation to... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.