We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Ready-Made Cardiac Patch Repairs Heart Attack Damage

By HospiMedica International staff writers
Posted on 23 Apr 2020
Print article
Image: A synthetic cardiac patch boosts recovery of damaged hearts (photo courtesy of NC State University)
Image: A synthetic cardiac patch boosts recovery of damaged hearts (photo courtesy of NC State University)
A new study describes how a freezable, cell-free, artificial cardiac patch can deliver healing factors directly to the site of myocardial injury.

Developed at the University of North Carolina (UNC; Chapel Hill, USA) and North Carolina State University (NC State; Raleigh, USA), the new off-the-shelf fully acellular artificial cardiac patch (artCP) is composed of a porcine-based decellularized myocardial extracellular matrix (ECM) scaffold and synthetic encapsulated secreted factors retrieved from isolated human cardiac stromal cells. The artCP thus contains all of the therapeutics secreted by the cells, but without live cells that could trigger an immune response.

In a rat model of acute myocardial infarction (MI), subsequent transplantation of the artCP supported cardiac recovery over a three-week period by promoting angiomyogenesis, reducing scarring by 30%, and improving cardiac function by 50%. The safety and efficacy of the artCP were further confirmed in a porcine model of MI. And while cellular-based scaffold patches need to be freshly prepared to maintain cell viability, the artCP can maintain its potency even after long-term cryopreservation. The study was published on April 8, 2020, in Science Translational Medicine.

“We have developed an artificial cardiac patch that can potentially solve the problems associated with using live cells, yet still deliver effective cell therapy to the site of injury. The patch can be frozen and safely stored for at least 30 days,” said senior author Professor Ke Cheng, PhD, of the NC State/UNC Joint Department of Biomedical Engineering. “Since there are no live cells involved, it will not trigger a patient’s immune system to reject it. It is a first step toward a truly off-the-shelf solution to cardiac patch therapy.”

Cell therapy for cardiac remodeling after MI is therapeutic, in part, because of the paracrine effects of factors secreted from human cardiac stromal cells. But low retention and engraftment of transplanted cells can limit potential therapeutic efficacy, while seeding of a scaffold material with cells to create cardiac patches that can be transplanted onto the surface of the heart is a costly, time-consuming procedure, and since they use live cellular material, can increase the risk of tumor formation and arrhythmia.

Related Links:
University of North Carolina
North Carolina State University


Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
LED Phototherapy System
Bililed Mini+

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.