We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Feather Safety Razor

Download Mobile App





New COVID-19 Test Uses Magnetic Beads to Detect SARS-CoV-2 Virus

By HospiMedica International staff writers
Posted on 12 Oct 2020
Print article
Image: New COVID-19 Test Uses Magnetic Beads to Detect SARS-CoV-2 Virus (Photo courtesy of NTNU)
Image: New COVID-19 Test Uses Magnetic Beads to Detect SARS-CoV-2 Virus (Photo courtesy of NTNU)
A highly sensitive COVID-19 test, developed by researchers at the Norwegian University of Science and Technology (NTNU Trondheim, Norway), relies on magnetic nanoparticles to extract viral RNA.

A key aspect of this made-in-Norway COVID-19 test is a specific combination of polar solvents, buffers, salts and other chemicals that do not damage the viral RNA molecule itself. The solution contains substances that crack the virus open so that its genetic material can be extracted. NTNU has also developed iron oxide magnetic nanoparticles that strongly bind RNA. Once the magnetic nanoparticles are coated with the viral RNA, they can be removed from the solution using a magnet. PCR technology can then identify the genetic code from the RNA and compare it to the coronavirus.

The newly developed manufacturing process has proved to be very upscalable, which has enabled the NTNU labs to produce these high-quality and high-performance magnetic nanoparticles in very high volumes. Three laboratories at the Department of Chemical Engineering are currently manufacturing the magnetic nanoparticles, while another laboratory at the Department of Clinical and Molecular Medicine is making the solvents and buffers. At the same time, the test kits are subject to rigorous quality control and validation before shipping to customers. The magnetic nanobeads and buffers, and then the entire test kits are verified against a known COVID-19 positive patient sample.

In the process of gearing up to produce tests for Norway, the researchers improved the efficiency of the production system to the point where the lab is able to make more than enough tests for use in Norway. NTNU produces up to 1.2 million test kits per week and increases in production capacity will allow the groups to produce up to five million test kits a week. NTNU has signed agreements to deliver as many as one million COVID-19 test kits to DTU, the Technical University of Denmark, and APS LABS, an Indian biotech company. More than five million NTNU COVID-19 tests have already been supplied to the Norwegian health authorities. NTNU Technology Transfer has filed patent applications on the methods and products related to the NTNU COVID-19 test. The motivation is to secure control of the intellectual rights and provide access to the new test in an ethical and justifiable manner. At the same time, the university hopes to expand the number of countries to which the test will be exported.

“Testing and infection tracking are absolutely essential to maintaining control of the infection situation. The fact that NTNU has developed a new test method for detecting the coronavirus means that more people can be tested and that patients can get answers faster. It is very positive that this technology can now also be useful internationally,” said Bent Høie, Norway’s Minister of Health and Care Services.

Related Links:
Norwegian University of Science and Technology

Print article
IIR Middle East

Channels

Critical Care

view channel
Image: Three dimensional measurement of the all-mesh thermistor (Photo courtesy of Shinshu University)

Ultraflexible, Gas-Permeable Thermistors to Pave Way for On-Skin Medical Sensors and Implantable Devices

On-skin medical sensors and wearable health devices are important health care tools that must be incredibly flexible and ultrathin so they can move with the human body. In addition, the technology has... Read more

Surgical Techniques

view channel
Image: Engineers have developed a process that enables soft robots to grow like plants (Photo courtesy of University of Minnesota)

Soft Robotic System Can Grow Like Plants to Allow Surgical Access to Hard-To-Reach Areas

Soft robotics is an emerging field where robots are made of soft, pliable materials as opposed to rigid ones. Soft growing robots can create new material and “grow” as they move. These machines could be... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Business

view channel
Image: Differentiated stapling technology for bariatric surgery (Photo courtesy of Standard Bariatrics)

Teleflex Completes Acquisition of Bariatric Stapling Technology Innovator

Teleflex Incorporated (Wayne, PA, USA), a leading global provider of medical technologies, has completed the previously announced acquisition of Standard Bariatrics, Inc. (Cincinnati, OH, USA), which has... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.