We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App





New Machine Learning Technique Analyzes Electronic Health Records to Predict Mortality in COVID-19 Patients

By HospiMedica International staff writers
Posted on 19 Jan 2021
Print article
Illustration
Illustration
Researchers have used a machine learning technique called "federated learning" to examine electronic health records to better predict how COVID-19 patients will progress.

The researchers from the Mount Sinai Health System (New York, NY, USA) who built models using federated learning to enhance predictions of COVID-19 outcomes believe that the emerging technique holds promise to create more robust machine learning models that extend beyond a single health system without compromising patient privacy. These models, in turn, can help triage patients and improve the quality of their care.

Federated learning is a technique that trains an algorithm across multiple devices or servers holding local data samples but avoids clinical data aggregation, which is undesirable for reasons including patient privacy issues. Mount Sinai researchers implemented and assessed federated learning models using data from electronic health records at five separate hospitals within the Health System to predict mortality in COVID-19 patients. They compared the performance of a federated model against ones built using data from each hospital separately, referred to as local models. After training their models on a federated network and testing the data of local models at each hospital, the researchers found the federated models demonstrated enhanced predictive power and outperformed local models at most of the hospitals.

"Machine learning models in health care often require diverse and large-scale data to be robust and translatable outside the patient population they were trained on," said the study's corresponding author, Benjamin Glicksberg, PhD, Assistant Professor of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, and member of the Hasso Plattner Institute for Digital Health at Mount Sinai and the Mount Sinai Clinical Intelligence Center. "Federated learning is gaining traction within the biomedical space as a way for models to learn from many sources without exposing any sensitive patient data. In our work, we demonstrate that this strategy can be particularly useful in situations like COVID-19."

"Machine learning in health care continues to suffer a reproducibility crisis," said the study's first author, Akhil Vaid, MD, postdoctoral fellow in the Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, and member of the Hasso Plattner Institute for Digital Health at Mount Sinai and the Mount Sinai Clinical Intelligence Center. "We hope that this work showcases benefits and limitations of using federated learning with electronic health records for a disease that has a relative dearth of data in an individual hospital. Models built using this federated approach outperform those built separately from limited sample sizes of isolated hospitals. It will be exciting to see the results of larger initiatives of this kind."

Related Links:
Mount Sinai Health System

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Wireless Handheld Ultrasound System
TE Air

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.