We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Feather Safety Razor

Download Mobile App




Cardiac CT Algorithm Quantifies Aortic Valve Calcium

By HospiMedica International staff writers
Posted on 22 Feb 2021
Print article
Image: Cardiac CT AI can detect calcium buildup on the aortic valve (Photo courtesy of Getty Images)
Image: Cardiac CT AI can detect calcium buildup on the aortic valve (Photo courtesy of Getty Images)
A new study shows that an artificial intelligence (AI) model can automatically detect aortic valve calcium (AVC) on cardiac CT, and is superior to visual grading by radiologists.

Developed by researchers at the Catholic University of Korea (Seoul, South Korea), Yonsei University College of Medicine (Seoul, South Korea), and other institutions, the deep learning (DL)-based algorithm was initially trained and validated on 452 non-enhanced electrocardiogram-gated cardiac CT scans. It was then tested on a separate set of 137 cases, with each CT exam manually annotated by a radiologist with seven years of experience in cardiothoracic imaging, and AVC volume and Agatston scores were compared.

The results revealed that when manually measured AVC Agatston score was used as a benchmark, the accuracy of DL-measured AVC Agatston score for AVC volume grading was 97%, which was better than that of the four radiologist readers (77.8–89.9 %). The accuracy of DL algorithm for Agatston score was 92.9%. Overall, the DL model was deemed to be superior to all four radiologists for predicting severe aortic valve calcium cases. The study was published on February 6, 2021, in European Journal of Radiology.

“For observer performance testing, four radiologists determined AVC grade in two reading rounds. The diagnostic performance of DL-measured AVC volume and Agaston score for classifying severe AVC was compared with that of each reader's assessment,” explained lead author Suyon Chang, MD, of the Catholic University of Korea, and colleagues. “To validate AVC segmentation performance, the Dice coefficient [a statistic used to gauge the similarity of two samples] was calculated; after applying the DL algorithm, the Dice coefficient score was 0.807.”

The Agatston score is a semi-automated tool to calculate the extent of coronary artery calcification detected by an unenhanced low-dose CT scan, which is routinely performed in patients undergoing cardiac CT. It allows for early risk stratification as patients with a high Agatston score (over 160) have an increased risk for a major adverse cardiac event (MACE). Although it does not allow for the assessment of soft non-calcified plaques, it has shown a good correlation with contrast-enhanced CT coronary angiography.

Related Links:
Catholic University of Korea
Yonsei University College of Medicine



Print article

Channels

Critical Care

view channel
Image: EsoGuard has demonstrated over 90% specificity and 90% sensitivity in identifying Barrett’s Esophagus (Photo courtesy of Lucid Diagnostics)

Biomarker Based Non-Endoscopic Technology Identifies Risk for Esophageal Cancer

Barrett's esophagus (BE) is the benign and treatable precursor condition to esophageal adenocarcinomas (EAC) which is usually diagnosed at an advanced stage and is difficult to treat. Finding BE, a sign... Read more

Surgical Techniques

view channel
Image: Bio-glue enables near-instantaneous gelling, sealing and healing of injured tissue (Photo courtesy of Pexels)

Game-Changing ‘Bio-Glue’ Could End Use of Surgical Sutures and Staple

Tissue adhesive washout and detachment are major issues for medical practitioners and may prove fatal for patients, especially when the separation happens in vital organs like the lungs, liver and the heart.... Read more

Patient Care

view channel
Image: Future wearable health tech could measure gases released from skin (Photo courtesy of Pexels)

Wearable Health Tech Could Measure Gases Released From Skin to Monitor Metabolic Diseases

Most research on measuring human biomarkers, which are measures of a body’s health, rely on electrical signals to sense the chemicals excreted in sweat. But sensors that rely on perspiration often require... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.