We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Low-Cost, Portable Device Uses microRNA Technology to Diagnose Heart Attacks in Minutes

By HospiMedica International staff writers
Posted on 07 Oct 2021
Print article
Image: Professor Zorlutuna in the lab (Photo courtesy of University of Notre Dame)
Image: Professor Zorlutuna in the lab (Photo courtesy of University of Notre Dame)

Researchers have developed a new sensor that could diagnose a heart attack in less than 30 minutes, according to a new study.

The low-cost, portable device developed by researchers from the University of Notre Dame’s College of Engineering (Notre Dame, IN, USA) and the University of Florida’s College of Medicine (Gainesville, FL, USA) could prove to be a boon for health care professionals as it takes them hours to diagnose a heart attack. Initial results from an echocardiogram can quickly show indications of heart disease, but to confirm a patient is having a heart attack, a blood sample and analysis is required. Those results can take up to eight hours.

By targeting three distinct types of microRNA or miRNA, the newly developed sensor can distinguish between an acute heart attack and a reperfusion - the restoration of blood flow, or reperfusion injury, and requires less blood than traditional diagnostic methods to do so. The ability to differentiate between someone with inadequate blood supply to an organ and someone with a reperfusion injury is an unmet, clinical need that this sensor addresses.

“The current methods used to diagnose a heart attack are not only time intensive, but they also have to be applied within a certain window of time to get accurate results,” said Pinar Zorlutuna, Sheehan Family Collegiate Professor of Engineering at Notre Dame. “Because our sensor targets a combination of miRNA, it can quickly diagnose more than just heart attacks without the timeline limitation.”

“The technology developed for this sensor showcases the advantage of using miRNA compared to protein-based biomarkers, the traditional diagnostic target,” said Hsueh-Chia Chang, Bayer Professor of Chemical and Biomolecular Engineering at Notre Dame. “Additionally, the portability and cost efficiency of this device demonstrates the potential for it to improve how heart attacks and related issues are diagnosed in clinical settings and in developing countries.”

Related Links:
University of Notre Dame 
University of Florida 

 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Pre-Op Planning Solution
Sectra 3D Trauma

Print article

Channels

Surgical Techniques

view channel
Image: LUMISIGHT and Lumicell DVS offer 84% diagnostic accuracy in detecting residual cancer (Photo courtesy of Lumicell)

Cutting-Edge Imaging Platform Detects Residual Breast Cancer Missed During Lumpectomy Surgery

Breast cancer is becoming increasingly common, with statistics indicating that 1 in 8 women will develop the disease in their lifetime. Lumpectomy remains the predominant surgical intervention for treating... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.