We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Smart Laparoscopic Tool Allows Surgeons to “Feel” Tissues During Minimally-Invasive Surgery

By HospiMedica International staff writers
Posted on 27 Jun 2022
Print article
Image: A smart laparoscopic tool brings missing sense of touch to minimally-invasive surgery (Photo courtesy of NYU Abu Dhabi)
Image: A smart laparoscopic tool brings missing sense of touch to minimally-invasive surgery (Photo courtesy of NYU Abu Dhabi)

Minimally-invasive surgery (MIS), also known as “keyhole surgery,” has many advantages. Using specialized surgical instruments with thin, long tube-like shafts associated with endoscopes and surgical graspers, needles, and shears, MIS allows visualization and surgical access to target organs through small incisions. It requires shorter recovery times than “open surgery” and often involves less pain and scarring. Nonetheless, it offers surgeons limited field of vision and no ability to “feel” relative differences and stiffness of tissues during operation. Therefore, MIS operations are associated with the “lost sense of touch” dilemma for surgeons. Now, researchers have developed a simple, yet effective approach for on-demand tactile sensing in minimally-invasive surgery, overcoming the key limitation of the inability of surgeons to “feel” tissues during an operation.

A team of researchers from the NYU Abu Dhabi (Abu Dhabi, UAE) successfully tested the efficacy of their new tool, which uses off-the-shelf sensors integrated into a laparoscopic grasper. The researchers incorporated a system of commercially available sensors into common laparoscopic instruments to develop their Smart Laparoscopic Forceps (SLF), a system that measures in real-time the grasping force and angle of the grasped tissue using a force sensor on the grasping jaw and an angle sensor at the handle.

The data is analyzed using a microcontroller, and the grasping feedback is displayed on a monitor. Based on the deformation parameters captured by the two sensors, this smart tool gives the surgeon a relative stiffness index of the tissue on top of the applied force magnitude to help with decision-making throughout the surgery. Using this approach, conventional surgical tools can be made smart with tactile feedback features, on-demand, and in plug-and-play configuration.

The prototype was tested in the lab with the help of surgeons using different soft and hard tissues, including home-fabricated samples with known stiffness, raw and cooked chicken meat samples, as well as sheep samples from digestive organs including stomach and bowel. Results showed that the developed tool significantly helped them in accurately sort the different samples based on their stiffness. Further, the developed tool was able to identify hidden embedded lumps within these samples, demonstrating the capability to offer surgeons tactile feedback information including grasping forces, organ stiffness, and the presence of embedded lumps.

“During open surgeries, surgeons use their fingers to interact with internal tissues and organs, giving them tactile information that informs real-time surgical decisions,” said Wael Othman, a PhD candidate in Mechanical Engineering and the first author of the study. “But open surgeries come with costs, including the need for major incisions and potential serious consequences, including pain, risk of infection and lengthy recovery times. Our approach is exciting because it gives surgeons similar tactile information that, until now, has been missing during minimally-invasive surgeries.”

Related Links:
NYU Abu Dhabi

Print article
IIR Middle East


Critical Care

view channel
Image: Three dimensional measurement of the all-mesh thermistor (Photo courtesy of Shinshu University)

Ultraflexible, Gas-Permeable Thermistors to Pave Way for On-Skin Medical Sensors and Implantable Devices

On-skin medical sensors and wearable health devices are important health care tools that must be incredibly flexible and ultrathin so they can move with the human body. In addition, the technology has... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more


view channel
Image: Differentiated stapling technology for bariatric surgery (Photo courtesy of Standard Bariatrics)

Teleflex Completes Acquisition of Bariatric Stapling Technology Innovator

Teleflex Incorporated (Wayne, PA, USA), a leading global provider of medical technologies, has completed the previously announced acquisition of Standard Bariatrics, Inc. (Cincinnati, OH, USA), which has... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.