We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Novel Method to Disrupt Spiral Waves Offers New Path to Defibrillate Hearts, Terminate Arrhythmias

By HospiMedica International staff writers
Posted on 27 Jun 2022
Print article
Image: Spiral wave teleportation theory offers new path to defibrillate hearts, terminate arrhythmias (Photo courtesy of Pexels)
Image: Spiral wave teleportation theory offers new path to defibrillate hearts, terminate arrhythmias (Photo courtesy of Pexels)

Electrical waves enable the heart to contract and send blood throughout the body. When a wave becomes a spiral, its rotation is faster than the heart’s natural pacemaker and suppresses normal cardiac function. A spiral wave of electrical activity in the heart can cause catastrophic consequences. One spiral wave creates tachycardia - a heart rate that’s too fast - and multiple spirals cause a state of disorganized contraction known as fibrillation. For years, scientists and doctors have worked to find the best way to stop spiral waves before they get out of control. Yet for over half a century the best method has been a single strong electric shock. The 300 joules of energy required for defibrillation excites not just the heart cells, but the entire body, making it very painful for the patient. Now, a new method to disrupt spiral waves uses less energy and may be less painful than traditional defibrillation.

The new method was developed by researchers from the Georgia Institute of Technology (Atlanta, GA, USA) who determined that because spiral waves develop in pairs, they must also be terminated in pairs. Every spiral wave is connected to another spiral going in the opposite direction. Bringing the spiral waves together through an electric shock instantly eliminates both waves. The researchers used a mathematical method to identify the key regions for electrical shock stimulation to target spiral waves. They determined that a stimulus delivered to the tissue areas a spiral wave just left and were able sustain a new wave could defibrillate the heart.

In the process of terminating the spiral waves, the researchers were actually moving them, as well, through a concept they named “teleportation.” Spiral waves can be teleported anywhere in the heart using this approach. In particular, spiral waves can be moved so that they collide with their partners, which extinguishes them. For successful defibrillation to occur, all pairs of spiral waves must be eliminated in this manner. The researchers plan to further test this concept using two-dimensional cultures of heart cells and develop methods that could be used clinically.

“This research explains the minimum energy required to actually terminate an arrhythmia and I believe it clarifies the mechanism for defibrillation,” said Professor Flavio Fenton, School of Physics at the Georgia Institute of Technology. “We call it teleportation because it’s very similar to what you see in science fiction where something is moved instantaneously from one place to another. The next step is to prove experimentally that what we did numerically is possible.”

Related Links:
Georgia Institute of Technology

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Hydrogen Peroxide Sterilizer
HMA-30

Print article

Channels

Surgical Techniques

view channel
Image: NTT and Olympus have begun the world\'s first joint demonstration experiment of a cloud endoscopy system (Photo courtesy of Olympus)

Cloud Endoscopy System Enables Real-Time Image Processing on the Cloud

Endoscopes, which are flexible tubes inserted into the body's natural openings for internal examination and biopsy collection, are becoming increasingly vital in medical diagnostics. Their minimal invasiveness... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.