We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




AI Diagnostic Tool Identifies Sepsis Within 12 Hours After Hospital Admission

By HospiMedica International staff writers
Posted on 15 Jul 2022
Print article
Image: A new AI diagnostic tool can identify a patient’s likelihood of developing sepsis (Photo courtesy of Pexels)
Image: A new AI diagnostic tool can identify a patient’s likelihood of developing sepsis (Photo courtesy of Pexels)

Sepsis, the body’s exaggerated response to infection, can cause widespread inflammation and organ failure. In a medical field like critical care, where time can mean life or death, a sepsis diagnosis is like the final buzzer. Identifying patients most at risk has relied on a clinician’s own discretion and experience treating sepsis. Now, a diagnostic tool leverages artificial intelligence to identify a patient’s likelihood of developing sepsis - and how severe it will be - as soon as 12 hours after their hospital admission.

Researchers at the University of Florida Health (Gainesville, FL, USA) evaluated the tool that relies on an algorithm that helps practitioners quickly discern which patients are most at risk. In the event that sepsis is not recognized early and managed promptly, septic shock ensues, resulting in multiple organ failure and death. Of those who survive sepsis, only half will completely recover. The rest will either die within one year or be encumbered by long-term disabilities, according to the WHO. The earlier sepsis is detected, the greater the likelihood of a full recovery. Rapid determination and early intervention is the key to treating it. The new algorithm marks an instance where technology can better identify how patients’ genetics can influence their response to treatment plans, and has more than halved the time it takes doctors to get information they need to make decisions before it’s too late.

Clinicians who treat critically ill patients must contend with two questions - Will the patient have a difficult clinical trajectory, requiring more aggressive interventions and supervision? And, if that’s the case, then how can clinicians determine the best type of treatment uniquely suited to them? Physiological responses to sepsis run the gamut. Someone can be septic from something as simple as a urinary tract infection, receive antibiotics and be discharged within three days. Another patient with the same diagnosis can go down a much more clinically complex path due to things like age, disease history and comorbidities. The new tool lends a precision medicine perspective, allowing clinicians to tailor their care to the individual and the drugs they will respond best to before it’s too late.

“There is no consistent way of recognizing and triaging critically ill patients when they’re admitted to the ICU,” said Lyle L. Moldawer, Ph.D., director of the Sepsis and Critical Illness Research Center, and emeritus director of the UF Laboratory of Inflammation Biology and Surgical Science. “While this may not pose a problem at large academic institutions with dedicated specialists, it can be harder for places where tertiary care is less developed. The worst thing you can do is have a patient sit in the ICU for 72 hours or even 96 hours without an intervention.”

“Sepsis is a very heterogeneous disease,” said Scott Brakenridge, first author and currently a trauma surgeon at the University of Washington. “People’s immune systems react in different ways to infection and display different levels of illness. In fact, one of the main reasons that finding effective therapeutics to treat sepsis has been so challenging is due to this variation among patients.”

“There will be genomic diagnostic devices that we’ll be able to use right at the bedside in the hospital very soon,” added Brakenridge. “This is really the first time that we’ve been able to move genomic technology to a point-of-care application and take something very exciting at the scientific bench, translate it into a highly insightful biologic metric, and see it used in patients.”

Related Links:
University of Florida Health 


Print article
IIR Middle East

Channels

Critical Care

view channel
Image: Three dimensional measurement of the all-mesh thermistor (Photo courtesy of Shinshu University)

Ultraflexible, Gas-Permeable Thermistors to Pave Way for On-Skin Medical Sensors and Implantable Devices

On-skin medical sensors and wearable health devices are important health care tools that must be incredibly flexible and ultrathin so they can move with the human body. In addition, the technology has... Read more

Surgical Techniques

view channel
Image: Engineers have developed a process that enables soft robots to grow like plants (Photo courtesy of University of Minnesota)

Soft Robotic System Can Grow Like Plants to Allow Surgical Access to Hard-To-Reach Areas

Soft robotics is an emerging field where robots are made of soft, pliable materials as opposed to rigid ones. Soft growing robots can create new material and “grow” as they move. These machines could be... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Business

view channel
Image: Differentiated stapling technology for bariatric surgery (Photo courtesy of Standard Bariatrics)

Teleflex Completes Acquisition of Bariatric Stapling Technology Innovator

Teleflex Incorporated (Wayne, PA, USA), a leading global provider of medical technologies, has completed the previously announced acquisition of Standard Bariatrics, Inc. (Cincinnati, OH, USA), which has... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.