We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Ultrathin Endoscope Fits inside Needle to Guide Minimally Invasive Surgery

By HospiMedica International staff writers
Posted on 31 Jul 2022
Print article
Image: A photoacoustic imaging endoscope probe can fit inside a medical needle (Photo courtesy of King’s College London)
Image: A photoacoustic imaging endoscope probe can fit inside a medical needle (Photo courtesy of King’s College London)

Photoacoustic imaging works by shining pulses of light onto absorbing structures in the body such as red blood cells or DNA. The structures then generate acoustic waves that can be detected by ultrasound sensors and used to form images that can resolve molecular, structural and functional information from below the tissue surface. By combining light and sound to create 3D images, photoacoustic imaging can provide important clinical information, but until now the instruments have been either too bulky or too slow for practical use as forward-viewing endoscopes. Now, researchers have created a photoacoustic imaging endoscope probe that can fit inside a medical needle with an inner diameter of just 0.6 millimeters.

The ultra-thin endoscope developed by researchers at King’s College London School of Biomedical Engineering & Imaging Sciences (London, UK) consists of two optical fibers each roughly the diameter of a human hair. Although fiber-based photoacoustic endoscopy probes have been developed, they usually require a bulky ultrasound detector or have a low imaging speed. In the new work, the researchers overcame both of these challenges by combining wavefront-based beam shaping with light-based ultrasound detection and a fast algorithm for controlling the device. This unique combination allowed them to create an extremely small probe without sacrificing imaging speed.

The new probe uses two thin optical fibers - one for delivering the pulsed light used to generate the photoacoustic waves and the other for ultrasound detection. For the excitation light, a high-speed digital micromirror device is used to scan a tightly focused light spot. This device has nearly one million tiny mirrors that can be independently flipped at tens of thousands of frames per second to change the wavefront of the light so that it can be focused and scanned quickly. For the ultrasound detection, the researchers developed an optical microresonator – a tiny structure made for confining light - that could be fabricated on the tip of an optical fiber. When sound waves hit the microresonator, its thickness changes, which, in turn, modifies the amount of light that is reflected back into the fiber, allowing optical detection of the acoustic waves.

To demonstrate the new device, the researchers used it to acquire high-resolution images of mouse red blood cells covering an area 100 microns in diameter. The researchers point out that imaging performance was not substantially degraded when the probe was scanned, suggesting that it isn’t affected by modest fiber bending. However, as a step toward clinical use, they will further investigate how complex fiber bending or semi-rigid configurations affect imaging performance. They also say that artificial intelligence could be used to increase the imaging speed.

“Traditional light-based endoscopes can only resolve tissue anatomical information on the surface and tend to have large footprints,” said Wenfeng Xia, leader of the research team from the King’s College London School of Biomedical Engineering & Imaging Sciences. “Our new thin endoscope can resolve subcellular-scale tissue structural and molecular information in 3D in real-time and is small enough to be integrated with interventional medical devices that would allow clinicians to characterize tissue during a procedure.”

“The imaging speed of this photoacoustic endomicroscopy probe is two orders of magnitude higher than those previously reported,” added Xia. “It could eventually allow 3D characterization of tissue during various minimally invasive procedures such as tumor biopsies. This could help clinicians pinpoint the right area to sample, which would increase the diagnosis accuracy.”

Related Links:
King’s College London 


Print article
IIR Middle East

Channels

Critical Care

view channel
Image: Three dimensional measurement of the all-mesh thermistor (Photo courtesy of Shinshu University)

Ultraflexible, Gas-Permeable Thermistors to Pave Way for On-Skin Medical Sensors and Implantable Devices

On-skin medical sensors and wearable health devices are important health care tools that must be incredibly flexible and ultrathin so they can move with the human body. In addition, the technology has... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Business

view channel
Image: Differentiated stapling technology for bariatric surgery (Photo courtesy of Standard Bariatrics)

Teleflex Completes Acquisition of Bariatric Stapling Technology Innovator

Teleflex Incorporated (Wayne, PA, USA), a leading global provider of medical technologies, has completed the previously announced acquisition of Standard Bariatrics, Inc. (Cincinnati, OH, USA), which has... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.