We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Injectable Hydrogel for Plugging Aneurysms Advances Treatment of Vascular Conditions

By HospiMedica International staff writers
Posted on 22 Sep 2022
Print article
Image: Injectable toothpaste-like biomaterials can be used for treating aneurysms (Photo courtesy of Terasaki Institute)
Image: Injectable toothpaste-like biomaterials can be used for treating aneurysms (Photo courtesy of Terasaki Institute)

Aneurysms are weaknesses in the venous walls that require immediate attention, as they can result in the ballooning and bursting of the blood vessels. These critical medical conditions are often treated using catheter-delivered blocking agents. The blocking agents are delivered into the vessels to stop blood flow in the affected area until the vessel wall can heal. The blocking material can then be removed or allowed to degrade naturally. Existing therapies involve the placement of platinum or stainless- steel coils, but these require specialized catheters and equipment to place and detach them and can also move to other places within the blood vessels. Another procedure is to attach clips to partition off the aneurysm, but this requires open surgery and can cause narrowing of arteries due to vasoconstriction. Still other methods involve the use of liquid blocking agents injected into the blood vessels which subsequently solidify. But these agents often leak during injection, and they can also impose toxic effects and necrosis in the surrounding tissues.

Now, researchers at the Terasaki Institute for Biomedical Innovation (TIBI, Los Angeles, CA, USA) have developed an injectable shear-thinning hydrogel (STH) that exhibits enhanced cohesive strength that resists fragmentation, even when subjected to strong, pulsating liquid flows found within the body. These shear-thinning materials behave like toothpaste in that when force is applied, they act like a solution, but when the force is removed, they retain their structure. Previous versions of STHs were subject to fragmentation and even disintegration when subjected to the high fluidic flow rates in a real-life aneurysm.

The research team began by formulating a gelatin-based STH with nanoparticles added for reinforcement of shear-thinning capabilities, mechanical stiffness, and physiological stability. They also added a highly charged chemical to the mix in order to impart cohesion without sacrificing injectability. In testing the STH-filled vessels under constant and pulsating buffer flows for up to four days, the researchers were able to observe and quantify retention of the STH plugs. They found that the plugs had successful retention without fragmentation within the simulated blood vessels, while maintaining its injectability and shear-thinning properties. Further tests revealed that STH caused no cellular damage or red blood cell lysis occurred, demonstrating its safe usage for treatment of vascular conditions.

“This improved shear-thinning hydrogel can withstand the real-life pulsating flows of the body and offers a significant advancement in treating critical vascular conditions,” said Ali Khademhosseini, Ph.D., TIBI’s Director and CEO. “It can pave the way for developing the next generation of injectable biomaterials.”

Related Links:
Terasaki Institute 

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Infant Blood Draw Station
Infant Blood Draw Station

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.