We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App





COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles

By HospiMedica International staff writers
Posted on 03 Aug 2022
Print article
Image: Needle-free vaccine patch could better fight COVID-19 variants (Photo courtesy of University of Queensland)
Image: Needle-free vaccine patch could better fight COVID-19 variants (Photo courtesy of University of Queensland)

The ongoing SARS-CoV-2 pandemic continues to pose an enormous health challenge globally. The ongoing emergence of variants of concern has resulted in decreased vaccine efficacy necessitating booster immunizations. This was particularly highlighted by the recent emergence of the Omicron variant, which contains over 30 mutations in the spike protein and quickly became the dominant viral strain in global circulation. Currently-available vaccines may not be as effective because of the constantly emerging new variants of COVID-19, and this has left researchers at a crossroads. Now, a new study in mice suggests that a needle-free vaccine patch could better fight COVID-19 variants, such as Omicron and Delta, than a traditional needle vaccine.

The research, conducted by researchers at the University of Queensland (Brisbane, Australia), in partnership with Vaxxas (Brisbane, Australia), tested the Hexapro SARS-CoV-2 spike vaccine using the Vaxxas high-density microarray patch (HD-MAP) technology, and the results found the patch was far more effective at neutralizing COVID-19 variants. The researchers found that the vaccine patch appeared to counteract new variants more effectively than the current SARs-CoV-2 vaccine delivered by injection. The results extended further than just the Hexapro vaccine.

“The high-density microarray patch is a vaccine delivery platform that precisely delivers the vaccine into the layers of the skin which are rich in immune cells,” said UQ’s Dr Christopher McMillan. “We found that vaccination via a patch was approximately 11 times more effective at combatting the Omicron variant when compared with the same vaccine administered via a needle. So far, every vaccine type we have tested through the patch, including subunit, DNA, inactivated virus and conjugate produces superior immune responses compared to traditional needle vaccination methods.”

“The large number of mutations have given the virus the ability to evade the immune responses generated by the current vaccines,” said UQ’s Dr David Muller. “However, the patch technology has the potential to offer a new – and more effective – weapon in our arsenal, at a time where new variants are mutating at a rapid rate. The patches are not only more effective against emerging variants but are also far easier to administer than needle-based vaccines.”

Related Links:
University of Queensland 
Vaxxas 

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Supplier
Conductive Gel
Tensive
New
Touchscreen Non-Vacuum Autoclave
Little Sister SES 2010
New
6MP Color LED Backlit LCD Monitor
C6MPG

Print article
Radcal

Channels

Critical Care

view channel
Image: The new blood test could prevent some of the 350,000 sepsis deaths in the U.S. annually (Photo courtesy of Cytovale)

Sepsis Test Could Save Lives in Emergency Departments, Study Suggests

Sepsis poses a severe, life-endangering illness that arises when an infection triggers a body-wide chain reaction, potentially causing multiple organs to fail quickly. Prompt and accurate diagnosis is... Read more

Surgical Techniques

view channel
Image: Suppressing production of an immune protein could reduce rejection of biomedical implants (Photo courtesy of 123RF)

Protein Identified for Immune Rejection of Biomedical Implants to Pave Way for Bio-Integrative Medical Devices

Biomedical implants like breast implants, pacemakers, and orthopedic devices have revolutionized healthcare, yet a substantial number of these implants face rejection by the body and have to be removed.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more

Business

view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.