We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Injectable Hydrogel for Plugging Aneurysms Advances Treatment of Vascular Conditions

By HospiMedica International staff writers
Posted on 22 Sep 2022
Print article
Image: Injectable toothpaste-like biomaterials can be used for treating aneurysms (Photo courtesy of Terasaki Institute)
Image: Injectable toothpaste-like biomaterials can be used for treating aneurysms (Photo courtesy of Terasaki Institute)

Aneurysms are weaknesses in the venous walls that require immediate attention, as they can result in the ballooning and bursting of the blood vessels. These critical medical conditions are often treated using catheter-delivered blocking agents. The blocking agents are delivered into the vessels to stop blood flow in the affected area until the vessel wall can heal. The blocking material can then be removed or allowed to degrade naturally. Existing therapies involve the placement of platinum or stainless- steel coils, but these require specialized catheters and equipment to place and detach them and can also move to other places within the blood vessels. Another procedure is to attach clips to partition off the aneurysm, but this requires open surgery and can cause narrowing of arteries due to vasoconstriction. Still other methods involve the use of liquid blocking agents injected into the blood vessels which subsequently solidify. But these agents often leak during injection, and they can also impose toxic effects and necrosis in the surrounding tissues.

Now, researchers at the Terasaki Institute for Biomedical Innovation (TIBI, Los Angeles, CA, USA) have developed an injectable shear-thinning hydrogel (STH) that exhibits enhanced cohesive strength that resists fragmentation, even when subjected to strong, pulsating liquid flows found within the body. These shear-thinning materials behave like toothpaste in that when force is applied, they act like a solution, but when the force is removed, they retain their structure. Previous versions of STHs were subject to fragmentation and even disintegration when subjected to the high fluidic flow rates in a real-life aneurysm.

The research team began by formulating a gelatin-based STH with nanoparticles added for reinforcement of shear-thinning capabilities, mechanical stiffness, and physiological stability. They also added a highly charged chemical to the mix in order to impart cohesion without sacrificing injectability. In testing the STH-filled vessels under constant and pulsating buffer flows for up to four days, the researchers were able to observe and quantify retention of the STH plugs. They found that the plugs had successful retention without fragmentation within the simulated blood vessels, while maintaining its injectability and shear-thinning properties. Further tests revealed that STH caused no cellular damage or red blood cell lysis occurred, demonstrating its safe usage for treatment of vascular conditions.

“This improved shear-thinning hydrogel can withstand the real-life pulsating flows of the body and offers a significant advancement in treating critical vascular conditions,” said Ali Khademhosseini, Ph.D., TIBI’s Director and CEO. “It can pave the way for developing the next generation of injectable biomaterials.”

Related Links:
Terasaki Institute 

Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Gold Supplier
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Non-Vented Full Face NIV Mask
F&P Visairo RT075
New
EEG Diagnostic Device
EEGDigiTrack multiEEG_42

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: Suppressing production of an immune protein could reduce rejection of biomedical implants (Photo courtesy of 123RF)

Protein Identified for Immune Rejection of Biomedical Implants to Pave Way for Bio-Integrative Medical Devices

Biomedical implants like breast implants, pacemakers, and orthopedic devices have revolutionized healthcare, yet a substantial number of these implants face rejection by the body and have to be removed.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more

Business

view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.