We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Detachable Cardiac Pacing Lead to Improve Safety for Heart Patients

By HospiMedica International staff writers
Posted on 03 Jul 2024
Print article
Image: Pacing leads are routinely used to monitor patients and protect against the risk of postoperative arrhythmias (Photo courtesy of MIT)
Image: Pacing leads are routinely used to monitor patients and protect against the risk of postoperative arrhythmias (Photo courtesy of MIT)

Bypass surgery ranks as one of the most frequent open-heart surgeries, with the risk of mortality now nearly negligible. Nonetheless, there are instances where the removal of temporary cardiac pacing leads results in fatal heart damage. These pacing leads are typically employed during the post-surgical recovery phase to monitor patients and mitigate the risk of postoperative arrhythmias, such as complete heart blockages. The existing procedures for lead placement, involving surgical stitches or direct electrode insertion into the heart tissue, can cause trauma during both the insertion and removal processes. This increases the likelihood of tissue damage, bleeding, and device malfunction. Now, new research, published in the journal Science Translational Medicine, has demonstrated findings that could offer a potential platform for adhesive bioelectronic devices for cardiac monitoring, diagnosis, and treatment, and pave the way for the future development of bioadhesive electronics.

A team from the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) has introduced a 3D-printable bioadhesive pacing lead that can directly interface with heart tissue, facilitating minimally invasive adhesive implantation and offering an easy detachment method for gentle removal. This innovation represents the first bioadhesive version of a temporary cardiac pacing lead that can be attached and detached on-demand, improving safety and bioelectronic performance with a trauma-free application and removal process. The development of this bioadhesive pacing lead merges several technologies previously developed by the team in the fields of bioadhesives, bioelectronics, and 3D printing.

The MIT researchers developed 3D-printable bioadhesive materials by graft-polymerizing polyacrylic acid on hydrophilic polyurethane and mixing with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to enhance electrical conductivity. The resulting bioadhesive showed mechanical properties comparable to cardiac tissue and demonstrated strong adherence, ensuring stable electrical connectivity. In experimental studies using rat and porcine models, the bioadhesive pacing lead adhered solidly to cardiac tissue without causing visible tissue damage or bleeding during application or on-demand detachment. The device was compatible with standard clinical pacing systems and maintained a reliable electrical connection for cardiac monitoring and pacing over a period of 10 to 14 days in the animal models. These findings validate the potential of using printable adhesive electronics for cardiac pacing applications.

Related Links:
MIT

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Bariatric Flip Seat Scale
Detecto 6868
New
Surgical Operating Lamp
OKM 600E

Print article

Channels

Critical Care

view channel
Image: Tissue plasminogen activator working to dissolving brain clot and improving blood flow to the part of the brain being deprived (Photo courtesy of American Heart Association)

Injecting Clot-Dissolving Drug After Removing Large Brain Artery Clot Improves Stroke Outcomes

Approximately 1 in 5 ischemic strokes, which are caused by a clot, occur due to a blockage in a large artery in the brain (large vessel occlusions). The standard treatment for this type of stroke is the... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.