We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Ultrasound-Activated Hydrogel Could Revolutionize Drug Delivery for Medical Applications

By HospiMedica International staff writers
Posted on 30 Sep 2024

Researchers have created a composite hydrogel that enables sustained and consistent drug release, triggered by ultrasound. More...

This breakthrough could transform drug delivery for numerous medical applications where maintaining constant drug levels is essential for optimal therapeutic outcomes.

Developed by researchers at Michigan Medicine (Ann Arbor, MI, USA), the composite is known as an acoustically responsive scaffold and utilizes a fibrin hydrogel matrix. Upon exposure to ultrasound, an emulsion embedded in the hydrogel vaporizes into bubbles, releasing the encapsulated drug. While current drug delivery systems, such as osmotic pumps, can provide zero-order release—delivering a constant drug dose over time—they often have limitations that this fibrin hydrogel can address. The ability to control drug release through ultrasound allows for sustained zero-order release, providing a consistent drug level over an extended period. This approach could improve treatment effectiveness and reduce side effects associated with fluctuating drug concentrations. A key advantage is the use of fibrin, a biocompatible material that naturally degrades in the body, eliminating the need for surgical removal after treatment, which is sometimes required with other implantable systems.

In the study published in the October 2024 issue of the Journal of Controlled Release, the researchers developed stepwise equations to describe the multi-phase release behavior of the acoustically responsive scaffolds. This process includes an initial rapid release triggered by ultrasound, followed by a steady, zero-order release phase. These equations offer a new framework for designing and optimizing ultrasound-triggered drug delivery systems. The research team had previously used these scaffolds to promote blood vessel growth. Expanding this technology to drug delivery brings several benefits, such as on-demand release, personalized treatment plans, and non-invasive dose adjustments. The team is now working on acoustically responsive scaffolds that can sequentially deliver multiple growth factors, potentially paving the way for more advanced applications in tissue engineering and regenerative medicine.

“Having a mathematical model that accurately describes the release process from the ARS is crucial for ultimately personalizing treatment,” said Mario L. Fabiilli, Ph.D., principal investigator within the Ultrasound Laboratory and senior author on the paper. “In the future, these equations will empower us to precisely fine tune the drug dose non-invasively to meet individual patient needs.”

Related Links:
Michigan Medicine


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Dual Chamber Warming Cabinet
D-Series
New
Patient Monitor
IntelliVue MP5SC
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: New clinical guidance suggests treatments to prevent blood clots in CLTI patients after leg artery procedures (Photo courtesy of Shutterstock)

Stronger Blood Clot Prevention Measures Needed After Leg Artery Procedures in High-Risk Patients

Chronic limb-threatening ischemia (CLTI), the most severe form of peripheral artery disease (PAD), significantly reduces blood flow to the legs and feet. Despite undergoing lower limb revascularization... Read more

Surgical Techniques

view channel
Image: The milli-spinner can shrink blood clots without rupturing them (Photo courtesy of Andrew Brodhead/Stanford)

New Technology More Than Doubles Success Rate for Blood Clot Removal

In cases of ischemic stroke, where a blood clot obstructs oxygen supply to the brain, time is critical. The faster the clot is removed and blood flow restored, the more brain tissue can be saved, improving... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.