We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Nondestructive Device Detects Cancer in Ten Seconds

By HospiMedica International staff writers
Posted on 20 Sep 2017
Print article
Image: The MasSpec Pen detects cancerous tissue during surgery (Photo courtesy of UT Austin).
Image: The MasSpec Pen detects cancerous tissue during surgery (Photo courtesy of UT Austin).
A novel handheld mass spectrometry system can analyze tissues to detect cancerous tissue during surgery, claims a new study.

The MasSpec Pen, under development at the University of Texas (UT, Austin, USA), Baylor College of Medicine (Houston, TX, USA), and other institutions, is designed to identify the molecular profile of tissues using a small volume water droplet. After just three seconds of gentle physical contact with a tissue surface, the water droplet is transported to a mass spectrometer, where biomolecules are extracted and characterized for diagnostic proteins, lipids, and metabolites. The rapid molecular profiling of the tissues can be used to distinguish tumor from healthy tissue during surgery, without specific labeling or imaging.

In an ex-vivo molecular analysis of 20 thin human cancer tissue sections and 253 human patient tissue samples--including normal and cancerous tissues from breast, lung, thyroid, and ovary--the spectra obtained presented rich molecular profiles characterized by a variety of potential cancer biomarkers. Statistical classifiers derived from histologically validated molecular database allowed cancer prediction with high sensitivity (96.4%), specificity (96.2%), and overall accuracy (96.3%), as well as prediction of benign and malignant thyroid tumors and different histologic subtypes of lung cancer.

The researchers added that the classifier allowed accurate diagnosis of cancer even in marginal tumor regions presenting mixed histologic composition. They then went on to demonstrate that the MasSpec Pen could also be used for in-vivo cancer diagnosis during surgery performed in tumor-bearing mouse models, without causing any observable tissue harm or stress to the animal. The study was published on September 6, 2017, in Science Translational Medicine.

“Cancer cells have dysregulated metabolism as they're growing out of control. Because the metabolites in cancer and normal cells are so different, we extract and analyze them with the MasSpec Pen to obtain a molecular fingerprint of the tissue,” said senior author Livia Schiavinato Eberlin, PhD, of UT. “If you talk to cancer patients after surgery, one of the first things many will say is 'I hope the surgeon got all the cancer out.' It's just heartbreaking when that's not the case.”

“Any time we can offer the patient a more precise surgery, a quicker surgery, or a safer surgery, that's something we want to do. This technology does all three. It allows us to be much more precise in what tissue we remove and what we leave behind,” added study co-author James Suliburk, MD, of Baylor College of Medicine. “Our technology could vastly improve the odds that surgeons really do remove every last trace of cancer during surgery.”

Related Links:
University of Texas
Baylor College of Medicine
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Steam Sterilizer
2000 RBE

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.