We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Patient Specific Talus Spacer Treats Avascular Necrosis

By HospiMedica International staff writers
Posted on 04 Mar 2021
Print article
Image: The 3D printed Patient Specific Talus Spacer (Photo courtesy of Additive Orthopaedics)
Image: The 3D printed Patient Specific Talus Spacer (Photo courtesy of Additive Orthopaedics)
An additively manufactured patient specific implant allows patients suffering from avascular necrosis (AVN) to regain motion and reduce pain in the ankle.

The Additive Orthopaedics (Little Silver, NJ, USA) Patient Specific Talus Spacer is a three dimension (3D) printed implant that is designed to provide a joint-sparing alternative to other surgical interventions commonly used in late-stage AVN that may disable motion of the ankle joint. Constructed of a porous lattice structure in order to support bony in-growth, the advanced talus implant includes complex geometries that lead to enhanced osteointegration, which are not possible with traditional manufacturing processes.

The Patient Specific Talus Spacer is 3D printed for each patient individually, modeled from a computed tomography (CT) scan, and is fitted to the patient's specific anatomy. During the replacement surgery, the patient's talus bone is removed and replaced with the implant, which is made from cobalt chromium alloy. While fusion may become necessary in the future (should the condition worsen), the Additive Orthopaedics Talus Spacer provides a joint-sparing procedure, as it allows the patient to retain motion in the ankle joint.

“Avascular necrosis of the talus is extremely painful and debilitating for these patients. The Patient Specific Talus Spacer is another example of how 3D printed devices can improve the standard of care,” said Greg Kowalczyk, President of Additive Orthopaedics. “Surgical treatment options are below-the-knee amputation or joint fusion, which results in loss of motion of the ankle, and can have poor outcomes.”

AVN of the ankle joint is a serious and progressive condition that causes death of bone tissue stemming from a lack of blood supply to the area. It is often caused by a sudden injury--such as a broken bone or a dislocated joint--or sustained damage to the tissue that develops over time, causing the damaged bone to turn necrotic. When a joint is affected, such as the ankle, the cartilage also deteriorates, leading to arthritis and pain. Late-stage AVN of the ankle may result in the talus partially or fully collapsing.

Related Links:
Additive Orthopaedics

Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
EMG/NCV Testing Unit
Cadwell EMG/NCV/EP Sierra Summit Device

Print article

Channels

Critical Care

view channel
Image: Researchers have developed a novel risk score for cardiovascular complications after bone marrow transplant (Photo courtesy of 123RF)

Novel Tool Predicts Cardiovascular Risks after Bone Marrow Transplantation

Every year, thousands of people undergo bone marrow transplants to potentially cure serious diseases like leukemia, lymphoma, and immune deficiency disorders. While these transplants can be lifesaving,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.