We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Sweat-Analyzing Tattoo Monitors Biomarkers Linked To Diseases

By HospiMedica International staff writers
Posted on 29 Jan 2024
Print article
Image: The thin sweat monitor can be seen above the ring on this woman’s hand (Photo courtesy of UMass Amherst)
Image: The thin sweat monitor can be seen above the ring on this woman’s hand (Photo courtesy of UMass Amherst)

Several crucial biomolecules present in sweat can offer key insights into human performance and their potential connections to various diseases. However, the current methods for analyzing sweat are cumbersome and time-intensive, confined predominantly to laboratory environments. Typically, sweat analysis is conducted in clinical settings utilizing large, refrigerator-sized machines through liquid chromatography-mass spectroscopy. This process involves collecting a sweat sample using a swab, followed by storage and analysis, making it a slow and cost-ineffective approach. To address these limitations, researchers are now in the process of developing a new sweat monitor that can be applied to the skin like a temporary tattoo, enabling on-the-spot assessment of crucial biomolecules. These novel sweat tattoos aim to provide individuals with deeper insights into their health and assist researchers in discovering early markers of diseases.

The research by the team at the University of Massachusetts Amherst (Amherst, MA, USA) involves a merger of two research tracks. The first track focuses on the development of a graphene-based tattoo that acts as a passive electrode for monitoring the body's electrical activity. The second track focuses on the study of rigid graphene-based biosensors. The research will be backed by a two-year, USD 200,000 grant from the National Science Foundation to develop graphene-based tattoos. In the initial phase of their research, the team will focus on tracking cortisol levels. Cortisol is a biomarker linked to stress, stroke, Cushing's syndrome, and Addison’s disease, a rare chronic condition. The goal is to eventually broaden the scope of this technology to include other compounds, such as glucose, lactate, estrogen, inflammation markers, and more, once the technique is fully established.

“It’s almost entirely transparent, exceptionally conductive and it really goes into this perfect contact with the human skin. It’s imperceptibly self-adhesive—we don’t apply any adhesive, we literally transfer it on skin,” said research lead and assistant professor of biomedical engineering, Dmitry Kireev. “We want to have routine analysis [of these bio analytes] so we don’t only get information about people when they’re sick or when they have the problem, but before it happens.”

Related Links:
University of Massachusetts Amherst

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Ultra Low Floor Level Bed
Solite Pro

Print article

Channels

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.