We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ozone Therapy Patch Treats Antibiotic-Resistant Infections

By HospiMedica International staff writers
Posted on 16 Sep 2020
Print article
Image: A small ozone generator helps wounds heal (Photo courtesy of Purdue Univsersity)
Image: A small ozone generator helps wounds heal (Photo courtesy of Purdue Univsersity)
A wearable, portable topical ozone therapy system could provide a promising alternative approach for treatment of non-healing and infected wounds.

Developed at Purdue University (Lafayette, IN, USA), the system is comprised of a flexible and disposable semipermeable dressing connected to a portable and reusable ozone-generating unit via a flexible tube. The dressing itself consists of a multilayered structure with gradient porosities to achieve uniform ozone distribution, and with hydrophobic properties that allow contact with biofluids on the wound surface, without blocking the exposed pores. The combination of features permits a uniform permeation of ozone through the dressing, without significant resistance.

The antimicrobial effects of the system were tested against common antibiotic resistant strains of bacteria, including Pseudomonas aeruginosa and Staphylococcus epidermidis. The results indicated complete elimination of P. aeruginosa and a significant reduction in the number of S. epidermidis colonies after six hours of exposure. The tests also showed low cytotoxicity against human fibroblast cells during the same duration ozone treatment. The study was published in the August 2020 issue of Frontiers in Bioengineering and Biotechnology.

“We created a revolutionary type of treatment to kill the bacteria on the surface of the wound or diabetic ulcer and accelerate the healing process,” said senior author Rahim Rahimi, PhD, of the Purdue School of Materials Engineering. “Our breathable patch is applied to the wound and then connected to a small, battery powered ozone-generating device. The ozone gas is transported to the skin surface at the wound site and provides a targeted approach for wound healing. Our innovation is small and simple to use for patients at home.”

Ozone is known to inactivate bacteria, viruses, fungi, yeast, and protozoa through the oxidation of phospholipids and lipoproteins in the cell envelope, which leads to weakened or destroyed bacterial walls.

Related Links:
Purdue University


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Multilevel Self-Loading Stretcher
CARRERA XL

Print article

Channels

Surgical Techniques

view channel
Image: NICO SPECTRA is only hand-held technology delivering blue light closer to target to enhance tissue fluorescence (Photo courtesy of NICO Corporation)

Handheld Device for Fluorescence-Guided Surgery a Game Changer for Removal of High-Grade Glioma Brain Tumors

Grade III or IV gliomas are among the most common and deadly brain tumors, with around 20,000 cases annually in the U.S. and 1.2 million globally. These tumors are very aggressive and tend to infiltrate... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.