Features | Partner Sites | Information | LinkXpress
Sign In
Ampronix
GLOBETECH PUBLISHING LLC
Schiller

Sharkskin Surface Topography Inhibits Bacterial Growth

By HospiMedica International staff writers
Posted on 07 Jan 2009
A new way to control infections on artificial surfaces, based on the physical properties of a shark's skin, is able to inhibit the growth of microorganisms and bacteria, including Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.

The Sharklet surface technology antibacterial properties do not derive from a chemical characteristic, but rather from the shape and microscopic pattern alone. The surface technology is comprised of billions of tiny, raised, microscopic sections that mimic the height, width, length, and curvature of natural sharkskin surface. Each diamond shaped section measures 25 microns across, or about a fifth of the thickness of a human hair, and contains seven raised ribs of varying length that various microorganisms find inhospitable. The sharkskin patterns are etched using a technique called deep ion lithography, and can be embedded onto the surfaces of medical devices such as catheters or artificial hips, as well as medical care equipment such as hospital beds, and even door knobs, and are capable of controlling bacterial growth for up to 21 days.

The Sharklet pattern has been tested and proven effective against plant, animal, and bacterial organisms, and can it be tuned to evoke a specific bioresponse from organisms. While not discernable to the naked eye or easily felt to the touch, the surface technology has demonstrated in laboratory tests to be inhospitable to bacterial growth and biofilm formation, when compared to smooth surfaces. Sharklet surface technology was developed by Sharklet Technologies (Alachua, FL, USA).

"It's the first nontoxic, long lasting, and no-kill surface to control the growth of harmful microorganisms,” said Mark Spiecker, vice president of operations at Sharklet.

A general rule of the ocean is that slow moving marine animals, like whales, are host to organisms such as barnacles and algae, while fast moving animals are generally clean. Certain species of slow-moving sharks seem to violate this rule, however, staying relatively clean due in part to their unique skin pattern. Sharkskin is made of a matrix of tiny, hard, tooth-like structures called dermal denticles or placoid scales. These structures are shaped like curved, grooved teeth and they make the skin a very tough armor with a texture like sandpaper. They have the same structure as a tooth with an outer layer of enamel, dentine, and a central pulp cavity. These scales also help the shark swim more quickly because their streamlined shapes helps decrease the friction of the water flowing along the shark's body by channeling it through grooves.

Related Links:
Sharklet Technologies



Inditherm
Anetic Aid
JD Honigberg International
RG Advertising

Channels

Surgical Techniques

view channel

Epidural Steroid Injections Could Help Avoid Surgery

For patients with lower back pain, epidural steroid injections (ESI) could reduce the need for surgery, according to a new study. Researchers at Massachusetts General Hospital (Boston, USA) conducted a systematic review and meta-analysis of studies to determine whether ESI could have a surgery-sparing effect in patients... Read more

Women's Health

view channel

Pregnant Women in Austria Experience Iodine Deficiency

A new study suggests that pregnant women in Austria have a potentially clinically significant iodine deficiency which could impair embryonic brain development. Researchers at the Medical University of Vienna (Austria) conducted a cross-sectional investigation of urinary iodine excretion in 246 pregnant women (2 in the... Read more

Health IT

view channel

Computer Model Predicts Public Response to Disease Outbreaks

A new computer model could help public health officials anticipate public reactions to disease outbreaks, based on a combination of data collected from hospitals, social media, and other sources. Researchers at MIT (Cambridge, MA, USA), the Draper Laboratory (Cambridge, MA, USA), and Ascel Bio (Larchmont, NY, USA),... Read more

Business

view channel

Abbott Completes Topera Acquisition

Abbott (Abbott Park, IL, USA) has completed its acquisition of Topera (Menlo Park, CA, USA), developer of innovative electrophysiology technologies for the diagnosis and treatment of atrial fibrillation (AF). The Topera rotor identification system helps physicians identify and target patient-specific rotors that have... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.