We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Siemens Healthineers

Provides customized electronic systems and advanced imaging, diagnostics, therapy, and healthcare IT solutions for th... read more Featured Products: More products

Download Mobile App




Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery

By HospiMedica International staff writers
Posted on 28 Mar 2024
Print article
Image: The CIARTIC Move self-driving mobile C-arm has received FDA clearance (Photo courtesy of Siemens)
Image: The CIARTIC Move self-driving mobile C-arm has received FDA clearance (Photo courtesy of Siemens)

Intraoperative imaging faces significant challenges due to staff shortages and the high demands placed on surgical teams in the operating room (OR). A common challenge during many OR procedures is the frequent need to reposition the C-arm to provide surgeons with precise anatomical views, a task that is often stressful, time-consuming, and susceptible to error with traditional mobile C-arms. Now, a mobile C-arm with self-driving capabilities that automates repositioning during surgery and can be moved effortlessly has the potential to address staff shortages and work overload in ORs.

Siemens Healthineers’ (Erlangen, Germany) self-driving mobile C-arm, CIARTIC Move, accelerates and standardizes 2D fluoroscopic and 3D cone-beam computed tomography (CT) imaging for surgical and OR teams in both hospital and outpatient settings. This innovation offers consistent automated workflows, thereby minimizing imaging time in surgeries. The CIARTIC Move, which is fully motorized from its C-arm to its wheels, boasts self-driving functionality that automates imaging workflows and ensures consistency. Such automation significantly diminishes the manual effort and staffing requirements traditionally associated with positioning the C-arm. It allows for the storage of up to 12 procedure-specific positions and corresponding imaging parameters. With this technology, recalling stored positions and imaging parameters is as simple as pressing a button, eliminating the need for extended communication between surgeons and OR staff. This automation ensures that surgeons and staff can effortlessly reproduce images from the desired angles or swiftly reposition the C-arm.

Designed for orthopedic, trauma, spine, thoracic, vascular, cardiovascular, general surgery, urology, and interventional pulmonology procedures, CIARTIC Move has demonstrated significant intraoperative time savings in preclinical tests —nearly cutting it by half for spine surgeries and reducing it by 55% for pelvic surgeries compared to traditional mobile C-arms. It enables single-user operation through a wireless control, even from within a sterile field, and its fully motorized chassis and touch-sensitive handles allow for smooth movement. Moreover, its active sensing technology detects obstacles in transport mode, automatically halting all motorized movement to prevent collisions. Siemens Healthineers has received clearance from the Food and Drug Administration (FDA) clearance for the CIARTIC Move self-driving mobile C-arm.

“With the FDA clearance of the CIARTIC Move, Siemens Healthineers proudly introduces our first self-driving mobile C-arm, which can provide much-needed relief for overtaxed operating room teams by automating and accelerating intraoperative imaging workflows to a previously unseen degree,” said April Grandominico, vice president for surgical therapies in the Advanced Therapies business at Siemens Healthineers North America.

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Enterprise Imaging & Reporting Solution
Syngo Carbon

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.