We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Radiation Risk Predicted for Astronauts on Space Station

By MedImaging staff writers
Posted on 25 Feb 2008
Print article
An accurate method predicts the doses of radiation that astronauts will receive aboard the orbiting European laboratory module, Columbus, recently attached to the International Space Station (ISS).

The radiation environment close to Earth consists mainly of particles trapped in the Earth's magnetic field, particles that arrive from deep space called Galactic Cosmic Rays (GCRs), and particles expelled from the Sun during solar eruptions. These components vary with time, mainly due to the unpredictable activity of the Sun, which influences the Earth's magnetic field. In turn, the Earth's field determines the extent of the trapped particles and how well Earth is shielded from incoming GCRs.

Beyond the Earth's magnetic field, spacecraft and their occupants are exposed to the full force of the GCRs and the solar eruptions. Missions to the Moon and Mars venture into this harsher and unpredictable radiation environment for periods of many months or even years.

A new software package accurately simulates the physics of radiation particles passing through spacecraft walls and human bodies. Such techniques will be essential to use for calculating the radiation doses received by astronauts on future voyages to the Moon and Mars.

The project, funded by European Space Agency's (ESA; Paris, France; www.esa.int) General Studies Program and the Swedish National Space Board (SNSB; Solna, Sweden), was initiated by Christer Fuglesang of ESA's European Astronaut Corps. The ESA simulation is called Dose Estimation by Simulation of the International Space Station (ISS) Radiation Environment (DESIRE). "The project was designed to provide a European capability in accurately predicting radiation doses onboard Columbus,” stated Petteri Nieminen, ESA's technical officer on the study.

To predict accurately the radiation risk faced by astronauts, scientists and engineers must tackle three separate problems: How much radiation is hitting the space vehicle? How much of that radiation is blocked by the available shielding? What are the biologic effects of the radiation on the astronauts?

To provide the environmental information, ESA is flying a standard radiation monitor on a number of its spacecraft, including Proba-1, Integral, Rosetta, GIOVE-B, Herschel, and Planck. Known as the Standard Radiation Environment Monitor (SREM), it measures high-energy radiation particles. It was developed and manufactured by Oerlikon Space (Zurich, Switzerland) in cooperation with Paul Scherrer Institute Villigen PSI, Switzerland) under a development contract from ESA.


Related Links:
European Space Agency
Oerlikon Space
Paul Scherrer Institute
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Baby Warmer
THERMOCARE Convenience

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Surgical Techniques

view channel
Image: The implantable ventricular assist device can support a child’s failing heart (Photo courtesy of Jarvik Heart, Inc.)

Small, Implantable Cardiac Pump to Help Children Awaiting Heart Transplant

Implantable ventricular assist devices, available for adults for over 40 years, fit inside the chest and are generally safer and easier to use than external devices. These devices enable patients to live... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.