We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Method Combines EEG, MRI, and ML to Identify Seizure-Prone Brain Regions Before Surgery

By HospiMedica International staff writers
Posted on 29 Aug 2024
Print article
Image: The faster, non-invasive approach finds epilepsy hotspots before surgery (Photo courtesy of 123RF)
Image: The faster, non-invasive approach finds epilepsy hotspots before surgery (Photo courtesy of 123RF)

Neurosurgery for patients with drug-resistant epilepsy involves locating the brain regions responsible for seizures. Generally, this requires patients to undergo 7 to 10 days of invasive intracranial EEG monitoring, where electrodes are implanted inside the brain through skull openings to record seizure activity. Researchers have now introduced a shorter, noninvasive technique for mapping seizure zones, which offers insights beyond what traditional EEGs can provide. Detailed in the journal Epilepsia, this novel method integrates standard scalp EEG readings with MRI data to map brain structures and employs machine learning to identify the brain areas most likely to generate seizures.

The team at Boston Children’s Hospital (Boston, MA, USA) conducted a retrospective analysis using approximately five minutes of scalp EEG data from 50 patients with drug-resistant epilepsy who had undergone neurosurgery. By incorporating MRI data and applying machine learning algorithms, they defined functional cortical networks, capable of detecting epileptiform activity not visible to the naked eye and even in the absence of discernible brain abnormalities on MRI. The algorithm showed a 75% accuracy rate (91% sensitivity, 74% specificity) in pinpointing seizure zones during episodes of epileptiform activity and 62% accuracy during non-epileptiform periods. The algorithm was less likely to match the targeted zones in patients who continued to experience seizures post-surgery, implying the initial surgical intervention did not accurately target the epileptic focus.

In cases where surgery did not stop the seizures, the model suggested that not all epileptogenic regions had been removed. It also pointed out scenarios where the epileptic area might be too extensive for resection, suggesting that such patients might better benefit from palliative treatments like neuromodulation. The researchers aim to further validate their approach in a larger, prospective study and determine which patients with drug-resistant epilepsy could most benefit from surgical interventions. Given its brief and noninvasive nature, this new technique could be applied earlier in the disease process, potentially allowing for earlier surgical interventions and helping to mitigate the neurodevelopmental impacts of epilepsy.

“Using computational tools, we can reconstruct cortical activity that the eye cannot catch and understand how different regions are functionally connected,” said Eleonora Tamilia, PhD, who directs the Epilepsy Monitoring Unit Signal and Data Science Program within the Epilepsy Center at Boston Children’s Hospital. “If a seizure starts in one region of the cortex, it’s likely to spread to another network it connects to. Even regions that are far apart may fire together.”

Related Links:
Boston Children’s Hospital

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90
New
Opaque X-Ray Mobile Lead Barrier
2594M

Print article
Radcal

Channels

Critical Care

view channel
Image: The Biointegrated Implantable Systems for Cell-based Sensing and Therapy technology can be used to treat various diseases (Photo courtesy of 123RF)

Implantable Cell-Based Bioelectronic Devices to Enable Patient-Specific Treatment and Disease Monitoring

Researchers are advancing the development of implantable, cell-based bioelectronic devices designed to provide personalized therapy and monitor disease conditions such as hypo- and hyperthyroidism in real-time.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.