We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




AI Algorithm Automates EEG Analysis for Detecting Epilepsy with High Precision

By HospiMedica International staff writers
Posted on 26 Sep 2024
Print article
Image: The two-stage computer algorithm detects epilepsy with high precision from EEG recordings (Photo courtesy of 123RF)
Image: The two-stage computer algorithm detects epilepsy with high precision from EEG recordings (Photo courtesy of 123RF)

Epilepsy is one of the most common neurological disorders, affecting 50 million people globally. Epileptic seizures result from abnormal brain activity and can lead to loss of consciousness, uncontrolled movements, and various visual and cognitive impairments. Currently, about 70% of epilepsy patients experience cessation of seizures through medical therapy or surgical intervention. To diagnose epilepsy accurately and prescribe the right treatment, doctors rely on identifying epileptic signs in EEG recordings. This process, however, is time-consuming, as EEG recordings for a single patient can range from hours to days. Furthermore, distinguishing epilepsy-specific signals from other brain activity requires significant expertise and clinical experience. Now, scientists have developed an algorithm that surpasses existing automated methods in detecting epilepsy on EEG recordings. The approach combines two techniques—an unsupervised classifier and a trainable neural network—aiming to automate EEG analysis and simplify the epilepsy detection process.

A team of scientists, including researchers from Immanuel Kant Baltic Federal University (Kaliningrad, Russia), has created an automated method to detect brain activity corresponding to epileptic seizures in EEG recordings. They employed a two-stage detection system by integrating two different approaches. In the first stage, a simple, unsupervised algorithm, known as a classifier, identifies "emissions"—signals with intensities that exceed normal brain activity. These emissions can represent epileptic seizures, external noise, or atypical brain activity such as sleep spindles. The classifier produces a marking that includes both actual epileptic seizures and various false positives.

In the second stage, a more complex neural network, based on machine learning, examines the "suspicious" EEG recordings flagged by the classifier. This neural network, specifically a convolutional type often used in image analysis, evaluates the EEG data as an entire image rather than as individual signals, identifying patterns associated with epilepsy. In this way, the neural network mimics how a doctor examines EEG signals and spectra for specific markers of epileptic seizures. The researchers tested both the two-stage system and its individual components using EEG data from 83 epilepsy patients during seizure episodes and calm states.

According to results published in IEEE Access, the sensitivity—the ability to detect abnormal EEG signals—of the classifier and neural network individually was 90% and 96%, respectively. However, their specificity, or ability to differentiate epileptic activity from other types of abnormal brain signals, was low at 12% and 13%. The two-stage system, while slightly less sensitive at 84%, had a much higher specificity of 57%, indicating a significant reduction in false positives. This makes the combined approach more suitable for clinical use than either method alone.

“The obtained result promises creation of automated system of marking of epileptic EEG, that enables to reduce routine duties of doctors epileptologists, connected with marking of long recordings, significantly,” said Alexander Hramov, head of the project and researcher at Immanuel Kant Baltic Federal University.

Related Links:
Immanuel Kant Baltic Federal University

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Electrocardiograph
SE-1200 Pro/SE-1201 Pro
New
Blood Sampling System
SafeSet

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: Researchers conducted an electric surgical procedure on a bile duct obstruction experimentally with a robotic convoy (Photo courtesy of DKFZ)

Miniature Robots Transport Instruments for Endoscopic Microsurgery Through Body

The potential applications for miniature robots in medicine are vast, ranging from targeted drug delivery to diagnostic tasks and performing surgical procedures. Researchers have already developed and... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.