We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




AI Helps Identify Liver Cirrhosis Using Electronic Health Records

By HospiMedica International staff writers
Posted on 28 Mar 2023
Print article
Image: Futuristic illustration of a liver created by DALL-EE AI (Photo courtesy of MUSC)
Image: Futuristic illustration of a liver created by DALL-EE AI (Photo courtesy of MUSC)

Cirrhosis, which is the end-stage of chronic liver disease and ranked as the 9th leading cause of death in 2021 by the Centers for Disease Control and Prevention, can result from various forms of liver damage and disease. Identifying patients who are likely to progress to cirrhosis has been difficult. However, early diagnosis could improve disease management. Artificial intelligence (AI) can be used to collect and analyze vast amounts of data, often from the electronic health record (EHR) containing the patient’s health history. While computers can easily interpret data entered into forms, it has been challenging to extract information from narrative text, such as clinician notes or discharge summaries. Previous attempts to extract information relied on keyword searches, which required input from a clinician familiar with the disease and multiple rounds of trial and error.

Researchers at the Medical University of South Carolina (MUSC, Charleston, SC, USA) have created a new AI method to automate the detection of liver cirrhosis by utilizing extensive data from EHRs. The AI model, called a convolutional neural network (CNN), mimics the neurons in the brain and was trained on EHRs of patients previously diagnosed with cirrhosis. By analyzing information embedded in narrative text and utilizing multiple layers of artificial neurons, the neural network can extract features and patterns to help identify cirrhosis.

After training on patient records manually reviewed to confirm cirrhosis diagnosis, the researchers applied their deep learning-based AI model that does not require prompts to a new set of health records. The model demonstrated exceptional success in identifying cirrhosis patients based solely on narrative text in clinician notes. Specifically, the trained CNN model achieved a precision rate of 97% when identifying cirrhosis patients using clinical text found in patient discharge summaries alone. While AI and machine learning have the potential to revolutionize the medical field, the researchers believe that these models are not meant to replace clinical judgment but rather to support and enhance it. Therefore, clinicians remain responsible for solving the case, with AI serving as a powerful tool to assist them, according to the researchers.

“The nice thing about using deep learning models is that the model learns from the examples you give it, without training it to look for certain words,” said Jihad Obeid, M.D., a professor in Biomedical Informatics at MUSC. “I think it's exciting that it was successful at identifying cirrhosis using just the text in the discharge summaries, as is the idea of taking it to the next level to see if we can apply it for earlier identification.”

Related Links:
MUSC

Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Supplier
Temperature Monitor
ThermoScan Temperature Monitoring Unit
New
All-Lead ECG Workstation
Dixion 1018
New
Patient Monitor
CMS9100

Print article
Radcal

Channels

Critical Care

view channel
Image: Flexible thin-film electrodes placed directly on brain tissue have shown promise for diagnosis and treatment of epilepsy (Photo courtesy of Tokyo Tech)

Thin-Film Neural Electrodes Placed Directly on Brain Tissue Can Diagnose and Treat Epilepsy

Analyzing brain activity is crucial for diagnosing conditions like epilepsy and other mental health disorders. Among various methods, electroencephalography (EEG) is considered the least intrusive, using... Read more

Surgical Techniques

view channel
Image: The ARC-IM Stimulator with brain-computer interface restores arm, hand, and finger function after spinal cord injury (Photo courtesy of ONWARD Medical)

First-in-Human Implant of Thought-Driven Movement Device to Treat Spinal Cord Injury

In order to walk, signals from the brain are sent to neurons in the lumbosacral part of the spinal cord. When a spinal cord injury occurs, it cuts off this essential communication between the brain and... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more

Business

view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.