We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




New AI Tool Predicts Medical Events to Support Clinical Decision-Making in Healthcare Settings

By HospiMedica International staff writers
Posted on 26 Mar 2024
Print article
Image: The AI tool predicts the health trajectory of patients by forecasting future disorders, symptoms, medications and procedures (Photo courtesy of 123RF)
Image: The AI tool predicts the health trajectory of patients by forecasting future disorders, symptoms, medications and procedures (Photo courtesy of 123RF)

In a new study, researchers have demonstrated the potential of a new artificial intelligence (AI) tool in predicting a patient’s health trajectory by forecasting future disorders, symptoms, medications, and procedures. This innovative tool could be used to aid clinical decision-making, healthcare monitoring, and improving the efficiency of clinical trials.

The tool – called Foresight – was developed by a team of researchers that included investigators from King’s College London (London, UK) and trained on data from extensive NHS electronic health records (EHRs). Foresight uses a deep learning approach to recognize complex patterns within the vast data of EHRs, both structured and unstructured, for generating predictive insights. The team utilized data from more than 811,000 patients for training three distinct Foresight models and extracted and processed the unstructured (free-text) and structured data (age, ethnicity, and sex) within the EHRs.

The team validated its predictive accuracy by comparing how well its predictions matched the actual health outcomes noted in a smaller data subset. When forecasting the next 10 possible disorders that could appear next in a patient timeline, Foresight correctly identified the next disorder 68% and 76% of the time in two UK NHS Trusts and 88% of the time in the US MIMIC-III dataset. Similarly, when forecasting the next new biomedical concept which could be a disorder, symptom, relapse, or medication, Foresight achieved a precision of 80%, 81%, and 91%, respectively.

Clinicians also evaluated Foresight's accuracy by creating mock patient timelines with various medical scenarios. When a unanimous agreement on a predicted medical event was reached among the clinicians, Foresight's predictions were found to be 93% relevant from a clinical standpoint. This showcases Foresight's capability for practical applications in risk forecasting, clinical research emulation, disorder progression studies, intervention simulations, and educational purposes.

“Our study shows that Foresight can achieve high levels of precision in predicting health trajectories of patients, demonstrating it could be a valuable tool to aid decision making and inform clinical research,” said Zeljko Kraljevic, Research Fellow in Health Informatics at King's College London. “The proposed purpose of Foresight is not to enable patients to self-diagnose or predict their future, but it could potentially be used as an aid by clinicians to make sure a diagnosis is not missed or for continual patient monitoring for real-time risk prediction. One of the main advantages of Foresight that it can easily scale to more patients, hospital or disorders with minimal or no modifications, and the more data it receives the better it gets.”

Related Links:
King’s College London

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Mattress Replacement System
Carilex DualPlus
New
Mobile Barrier
Tilted Mobile Leaded Barrier

Print article

Channels

Surgical Techniques

view channel
Image: Synthetic images generated by each diffusion model contrasted with the corresponding real textural images of four types of polyps (Photo courtesy of UT at Austin)

AI-Assisted Imaging to Assist Endoscopists in Colonoscopy Procedures

Colorectal cancer is a major health concern in the United States, with the likelihood of developing the disease being 1 in 25 for women and 1 in 23 for men. Polyps, which are precursors to cancer, can... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.