We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Machine Learning Model Accurately Identifies High-Risk Surgical Patients

By HospiMedica International staff writers
Posted on 18 Jul 2023
Print article
Image: Accurate and flexible ML model predicts patients at high-risk for complications after surgery (Photo courtesy of Freepik)
Image: Accurate and flexible ML model predicts patients at high-risk for complications after surgery (Photo courtesy of Freepik)

Prior to the COVID-19 pandemic, complications occurring 30 days post-surgery were the third leading cause of death worldwide, claiming approximately 4.2 million lives annually. Recognizing patients at high risk for post-surgical complications is crucial to improving survival rates and reducing healthcare costs. Researchers have now employed machine learning to develop and implement an efficient, adaptable model for identifying hospitalized patients at high risk for post-surgical complications.

Researchers and physicians at the University of Pittsburgh (Pittsburgh, PA, USA) and UPMC (Pittsburgh, PA, USA) developed this model by training the algorithm on the medical records of over 1.25 million surgical patients. The focus of the model was on mortality and the occurrence of major cerebral or cardiac events, such as stroke or heart attack, following surgery. The model was then validated using the records of another 200,000 surgical patients from UPMC. After validation, the model was implemented across 20 UPMC hospitals. Each morning, the program reviews the electronic medical records of patients scheduled for surgery and flags those identified as high risk. This alert enables clinical teams to improve care coordination and introduce prehabilitation measures before surgery, such as healthier lifestyle choices or a referral to the UPMC Center for Perioperative Care, thus lowering the risk of complications. Clinicians can also activate the model on demand at any time.

Additionally, the research team compared their model with the industry standard, the American College of Surgeon’s National Surgical Quality Improvement Program (ACS NSQIP), to further gauge its effectiveness. The ACS NSQIP, used at hospitals nationwide, requires manual input of patient information by clinicians and is unable to make predictions if data is missing. The researchers found their model to be more effective at identifying high-risk patients than the ACS NSQIP. As the model continues to be fine-tuned and developed, the researchers plan to train the program to predict the likelihood of other complications, such as sepsis and respiratory issues, that often result in prolonged hospital stays after surgery.

“We designed our model with the health care worker in mind,” said Aman Mahajan, M.D., Ph.D., M.B.A., chair of Anesthesiology and Perioperative Medicine, Pitt School of Medicine, and director of UPMC Perioperative and Surgical Services. “Since our model is completely automated and can make educated predictions even if some data are missing, it adds almost no additional burden to clinicians while providing them a reliable and useful tool.”

Related Links:
University of Pittsburgh 
UPMC 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Glassware Washer
Tiva 10-1VL

Print article

Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.