We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Visual Recognition System Supports Malaria Diagnostics

By HospiMedica International staff writers
Posted on 03 Sep 2014
An innovative system uses computer vision algorithms, similar to those used in facial recognition systems, to provide a decision support system for diagnosing malaria infection. More...


Developed by researchers at the Finnish Institute for Molecular Medicine (FIMM; Helsinki), the University of Helsinki (Finland), and Karolinska institutet (Stockholm, Sweden), the "man and machine" diagnostic aid digitizes and analyzes more than 50,000 red blood cells (RBCs) per blood sample, ranking them according to the probability of infection. The program then creates a panel containing images of more than a hundred most likely infected RBCs, and presents that panel to the user. Final diagnosis is by a health-care professional, based on the visualized images.

During the testing phase, more than 90% of the infected samples were accurately diagnosed based on the panel. The few problematic samples were of low quality, and in a true diagnostic setting would have led to further analyses. When comparing the system to existing diagnosed samples, the researchers were able to show that the accuracy of the computer vision algorithms was comparable to the quality criteria defined by the World Health Organization (WHO; Geneva, Switzerland). The study describing the system and its testing was published on August 21, 2014, in PLOS One.

“The equipment needed for digitization of the samples is a challenge in developed countries. In the next phase of our project we will test the system in combination with inexpensive mobile microscopy devices that our group has also developed,” said lead author Nina Linder, MD, PhD, of FIMM. “There is also a strong need for fast and accurate methods for measuring the malaria parasite load in a sample. Various malaria drug screening programs are underway and the parasite load in a large number of samples needs to be quantified for determining the efficacy of potential drugs. We are further developing the computer algorithms used in this study to meet this need as well.”

According to the researchers, the developed support system could be applied in various other fields of medicine. In addition to other infectious diseases such as tuberculosis (TB), the research group is planning to test the system for cancer diagnostics in tissue samples.

There are more than 200 million new malaria cases yearly, and high-quality microscopy is still the most accurate method for detection of infection. Microscopy, however, can be very time-consuming, placing a heavy workload on trained health-care personnel, thus contributing to the demonstrably low accuracy of microscopy. As a result, less than half of the suspected malaria cases in Sub-Saharan Africa in 2012 received a diagnostic test.

Related Links:

Institute for Molecular Medicine Finland
University of Helsinki
Karolinska institutet



Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Open Stapler
PROXIMATE Linear Cutter
Mammography System (Analog)
MAM VENUS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.