We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Human-Centered AI Tool Predicts Patient’s Sepsis Risk Within Four Hours

By HospiMedica International staff writers
Posted on 28 Aug 2024
Print article
Image: The human-centered AI tool aims to improve sepsis management (Photo courtesy of 123RF)
Image: The human-centered AI tool aims to improve sepsis management (Photo courtesy of 123RF)

Sepsis, a critical and life-threatening response to infection, can quickly lead to organ failure and is highly difficult to diagnose due to its common symptoms such as fever, low blood pressure, and increased heart rate, which mimic many other conditions. Now, an innovative artificial intelligence (AI) tool designed to assist clinicians in making decisions about patients at risk of sepsis introduces a novel feature: it accounts for uncertainties in its predictions and suggests additional information, such as demographic data, vital signs, and lab test results, needed to enhance its accuracy.

The system, called SepsisLab, was developed by scientists at The Ohio State University (Columbus, OH, USA) based on feedback from doctors and nurses in emergency and intensive care settings, where sepsis frequently occurs. These healthcare professionals expressed concerns over existing AI tools that rely solely on electronic health records without incorporating clinical inputs. SepsisLab improves upon this by predicting sepsis risk within a four-hour window while actively identifying and quantifying the importance of missing patient data, visually informing clinicians how certain pieces of information can influence the risk assessment.

This AI system updates its predictions hourly as new patient data is incorporated, continuously refining its accuracy. It also provides clinicians with actionable insights, suggesting which laboratory tests might be most informative and estimating how different clinical interventions could alter the patient's risk of developing sepsis According to the research published Aug. 24 in KDD ’24: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, incorporating just 8% additional data from lab results and other key variables can decrease uncertainty in the predictions by 70%, enhancing the tool’s accuracy in assessing sepsis risk by 11%.

“The existing model represents a more a traditional human-AI competition paradigm, generating numerous annoying false alarms in ICUs and emergency rooms without listening to clinicians,” said senior study author Ping Zhang, associate professor of computer science and engineering and biomedical informatics at Ohio State. “The idea is we need to involve AI in every intermediate step of decision-making by adopting the ‘AI-in-the-human-loop’ concept. We’re not just developing a tool – we also recruited physicians into the project. This is a real collaboration between computer scientists and clinicians to develop a human-centered system that puts the physician in the driver’s seat.”

Related Links:
The Ohio State University

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Central Monitoring System
Envoy Plus
New
Frontal Apron
601 - Frontal Apron

Print article

Channels

Surgical Techniques

view channel
Image: Schematic illustration of rADSC-loaded tubular units promoting bone regeneration of critical-sized skull defects (Photo courtesy of Sun Yat-sen University)

Groundbreaking Tubular Scaffolds Significantly Enhance Bone Regeneration of Critical-Sized Skull Defects

Critical-sized bone defects present a major challenge in the medical field. Traditional treatments like autografts and allografts face limitations due to donor shortages, mismatches in graft sizes, and... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.