Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Computer Model Used To Study and Design Miniature Biosensors

By Labmedica staff writers
Posted on 09 Jan 2008
Scientists have developed a new computer model to study and design miniature biosensors, which could help life scientists perfect lab-on-a-chip technology.

Biosensors are portable devices that integrate electronic circuitry with biologic molecules such as antibodies or DNA. More...
They are designed to capture and detect specific target molecules, allowing them to identify pathogens, DNA, or other substances. As such they have a myriad of uses, ranging from medical diagnostics, drug research and delivery, and environmental monitoring.

In efforts to design more sensitive devices, engineers have created sensors with various geometries: some capture the biomolecules on a flat or planar surface, others use a single cylindrical nanotube as a sensing element, and others use several nanotubes, arranged in a crisscrossing pattern like overlapping sticks.

Prof. Alam led a team from Purdue University (West Lafayette, IN, USA) in creating a mathematical model that can relate the shape of a biosensor to its performance. "Many universities and companies are conducting experiments in biosensors,” Prof. Alam said. "The problem is that until now there has been no way to consistently interpret the wealth of data available. Our work provides a completely different perspective on how to analyze data and how to interpret them.”

Prof. Alam additionally commented, "It's not what happens after the molecule is captured that determines how well the sensor works. It's how fast the sensor actually captures the molecule to begin with that matters most.” This distinction is important for the design of biosensors and it explains why biosensors with a single nanotube perform better than sensors containing several nanotubes or flat planar sensors. A single nanotube eliminates a phenomenon called "diffusion slow down.” As a result, target molecules move faster toward the nanotube. In addition, smaller sensors work better because they can capture the target molecules better, rather than detect them better. This means that target molecules move faster toward single nanotubes than other structures and also helps eliminate the diffusion slow down.

An impediment that prevented scientists from finding this before is that biosensor analysis is computationally too difficult to perform using conventional approaches. To overcome, the team at Purdue used a mathematical technique called "Cantor transformation” to simplify the calculations.

The scientists tested and validated their model with experimental data from other laboratories. The work was published in the December 21, 2007 edition of the journal Physical Review Letters.


Related Links:
Purdue University

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Gas Consumption Analyzer
Anesthetic Gas Consumption Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The AI-based approach identifies lipid regions matched well with histopathology results (Photo courtesy of Hyeong Soo Nam/KAIST)

AI-Based OCT Image Analysis Identifies High-Risk Plaques in Coronary Arteries

Lipid-rich plaques inside coronary arteries are strongly associated with heart attacks and other major cardiac events. While optical coherence tomography (OCT) provides detailed images of vessel structure... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.