We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




Using AI to Improve Early Breast Cancer Detection

By HospiMedica International staff writers
Posted on 24 Oct 2017
Researchers from the Massachusetts Institute of Technology’s (Cambridge, MA, USA) (MIT) Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts General Hospital, and Harvard Medical School have collaborated to develop an artificial intelligence (AI) system that uses machine learning to predict if a high-risk lesion identified on needle biopsy after a mammogram will upgrade to cancer at surgery.

Mammograms are the best available test for early detection of breast cancer, but are imperfect and often result in false positive results, leading to unnecessary biopsies and surgeries. More...
A common cause of false positives is “high-risk” lesions, which appear suspicious on mammograms and have abnormal cells when tested by needle biopsy. Generally, the patient undergoes surgery to have the lesion removed in such cases, although the lesions turn out to be benign at surgery 90 percent of the time. As a result, thousands of women have to unnecessarily undergo painful, expensive, scar-inducing surgeries.

As a first project to apply AI for improving detection and diagnosis, the teams have collaborated to develop an AI system, which is trained on information about more than 600 existing high-risk lesions and looks for patterns among many different data elements, including demographics, family history, past biopsies, and pathology reports. Using a method known as a “random-forest classifier,” the model when tested on 335 high-risk lesions correctly diagnosed 97 percent of the breast cancers as malignant and reduced the number of benign surgeries by more than 30 percent compared to existing approaches.

“This work highlights an example of using cutting-edge machine learning technology to avoid unnecessary surgery,” said Marc Kohli, director of clinical informatics in the Department of Radiology and Biomedical Imaging at the University of California at San Francisco. “This is the first step toward the medical community embracing machine learning as a way to identify patterns and trends that are otherwise invisible to humans.”

“Because diagnostic tools are so inexact, there is an understandable tendency for doctors to over-screen for breast cancer,” said Regina Barzilay, MIT’s Delta Electronics Professor of Electrical Engineering and Computer Science and a breast cancer survivor herself. “When there’s this much uncertainty in data, machine learning is exactly the tool that we need to improve detection and prevent over-treatment.”

In the near future, the model could also be easily tweaked for application in other types of cancer as well as for other completely different diseases. “A model like this will work anytime you have lots of different factors that correlate with a specific outcome,” said Barzilay. “It hopefully will enable us to start to go beyond a one-size-fits-all approach to medical diagnosis.”

Related Links:
Massachusetts Institute of Technology


Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Pressure Guidewire
SavvyWire
Absorbable Monofilament Mesh
Phasix Mesh
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: A smartphone application displays a glucose concentration that was measured using the new sensor (Photo courtesy of Chuchu Chen and Yonghao Fu)

Wearable Device for Diabetics Could Replace Continuous Glucose Monitoring Systems

Monitoring blood glucose is essential for people with diabetes to prevent complications and maintain long-term health. Current continuous glucose monitoring systems require needles inserted under the skin,... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.