We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

CANON

Canon U.S.A., Inc. provides digital imaging solutions for the healthcare sector, including digital detectors, digital... read more Featured Products: More products

Download Mobile App




Canon Medical Systems Initiates Collaborative Research On AI in MR Imaging

By HospiMedica International staff writers
Posted on 05 Apr 2018
Print article
Canon Medical Systems Corporation (Otawara, Tochigi Prefecture, Japan), along with Kumamoto University (Kumamoto Prefecture, Kurokami, Japan) and the University of Bordeaux (Bordeaux, Nouvelle-Aquitaine, France), has initiated collaborative research on the application of Deep Learning Reconstruction (DLR), an Artificial Intelligence (AI)-based technology in magnetic resonance (MR) imaging.

DLR is a reconstruction technology that utilizes deep learning technology to eliminate noise from images. The technology analyzes the relationship between noisy and less noisy images using a computer-generated model, making it possible to eliminate noise from newly acquired images. DLR is capable of acquiring high-resolution images, as well as allowing ultra-high-resolution images to be acquired more quickly in comparison to conventional imaging methods. As a result, the potential applications of this ultra-high-resolution imaging technology in the clinical setting have been attracting significant interest.

Additionally, in comparison to a standard smoothing filter, the noise elimination method employed in DLR causes only a slight reduction in image quality, and signal variation in organ parenchyma is minimized. This improves the image quality and helps to increase accuracy in quantitative analysis, which is easily affected by noise. Hence, DLR is considered as a major technological advance that can dramatically change how MRI examinations will be performed in the future. The combination of the latest AI technology with next-generation MRI scanners is expected to be useful in eliminating noise and improving image quality, as well as in a wide variety of MR-related fields.

“DLR has the potential to transform the conventional concept of MR imaging and is expected to allow the acquisition of super-high-resolution images in a shorter time and contribute to more accurate quantitative analysis,” said Professor Yasuyuki Yamashita of the Department of Diagnostic Radiology, Faculty of Life Science, Kumamoto University.

“When DLR is used in combination, the ultra-high-resolution images acquired using the latest 3-T MRI system from Canon Medical Systems (installed last November) are comparable to images acquired using a 7-T MRI system. This suggests that DLR may be able to take the place of some high-field conventional MRI studies,” added Professor Vincent Dousset, Institut de Bio-Imagerie Université de Bordeaux, Chef de Service Neuro-Imagerie CHU de Bordeaux.

“We are very proud to have started this cutting-edge collaborative research which will lead to the development of next-generation MRI technology at leading medical institutions both in and outside Japan. We anticipate that this research will prove to be of great value by providing higher-resolution images for clinical diagnosis,” said President Takiguchi of Canon Medical Systems Corporation.

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
1.5T MRI System
uMR 670

Print article

Channels

Surgical Techniques

view channel
Image: The device\'s LEDs light up in several colors, allowing surgeons to see which areas they need to operate on (Photo courtesy of UC San Diego)

Flexible Microdisplay Visualizes Brain Activity in Real-Time To Guide Neurosurgeons

During brain surgery, neurosurgeons need to identify and preserve regions responsible for critical functions while removing harmful tissue. Traditionally, neurosurgeons rely on a team of electrophysiologists,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.