We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




Researchers Develop AI Model to Make Cancer Treatment Less Toxic

By HospiMedica International staff writers
Posted on 20 Aug 2018
Researchers from the Massachusetts Institute of Technology (Cambridge, MA, USA) have developed an artificial intelligence model that “learns” from patient data to make cancer-dosing regimens less toxic but still effective.

In a paper presented at the 2018 Machine Learning for Healthcare conference at Stanford University, MIT Media Lab researchers have detailed a novel machine-learning technique to improve the quality of life for patients by reducing toxic chemotherapy and radiotherapy dosing for glioblastoma, the most aggressive form of brain cancer. More...
The “self-learning” machine-learning technique looks at the current treatment regimens in use and iteratively adjusts the doses, eventually finding an optimal treatment plan, with the lowest possible potency and frequency of doses that should still reduce tumor sizes to a degree comparable to that of traditional regimens.

In simulated trials of 50 patients, the machine-learning model designed treatment cycles that reduced the potency to a quarter or half of nearly all the doses while maintaining the same tumor-shrinking potential. It skipped doses altogether several times and scheduled administrations only twice a year instead of monthly.

The model is a major improvement over the conventional “eye-balling” method of administering doses, observing how patients respond, and adjusting accordingly, according to Nicholas J. Schork, a professor and director of human biology at the J. Craig Venter Institute, and an expert in clinical trial design. “[Humans don’t] have the in-depth perception that a machine looking at tons of data has, so the human process is slow, tedious, and inexact,” he said. “Here, you’re just letting a computer look for patterns in the data, which would take forever for a human to sift through, and use those patterns to find optimal doses.”

According to Schork, the work could be of particular interest to the US FDA, which is currently looking for ways to leverage data and artificial intelligence to develop health technologies. Regulations still need be established, he said, “but I don’t doubt, in a short amount of time, the FDA will figure out how to vet these [technologies] appropriately, so they can be used in everyday clinical programs.”

Related Links:
Massachusetts Institute of Technology


Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Mammography System (Analog)
MAM VENUS
Bipolar Coagulation Generator
Aesculap
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: A smartphone application displays a glucose concentration that was measured using the new sensor (Photo courtesy of Chuchu Chen and Yonghao Fu)

Wearable Device for Diabetics Could Replace Continuous Glucose Monitoring Systems

Monitoring blood glucose is essential for people with diabetes to prevent complications and maintain long-term health. Current continuous glucose monitoring systems require needles inserted under the skin,... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.