We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Philips Healthcare

Operates in Diagnostic Imaging Systems, Patient Care and Clinical Informatics, Customer Services, and Home Healthcare... read more Featured Products: More products

Download Mobile App




Intel and Philips Partner to Speed Up Imaging Analysis Using AI

By HospiMedica International staff writers
Posted on 22 Aug 2018
Print article
Intel Corporation (Santa Clara, CA, USA) and Royal Philips (Amsterdam, Netherlands) have tested two healthcare use cases for deep learning inference models: one on X-rays of bones for bone-age-prediction modeling and the other on CT scans of lungs for lung segmentation. In these tests, which were conducted using Intel Xeon Scalable processors and the OpenVINO toolkit, the researchers achieved a speed improvement of 188 times for the bone-age-prediction model and 38 times for the lung-segmentation model over the baseline measurements. These tests show that healthcare organizations can implement artificial intelligence (AI) workloads without expensive hardware investments.

The size of medical image files is growing along with the improvement in medical image resolution, with most images having a size of 1GB or greater. More healthcare organizations are using deep learning inference to more quickly and accurately review patient images. AI techniques such as object detection and segmentation can help radiologists identify issues faster and more accurately, which can translate to better prioritization of cases, better outcomes for more patients and reduced costs for hospitals. Deep learning inference applications typically process workloads in small batches or in a streaming manner, which means they do not exhibit large batch sizes. Until recently, graphics processing unit (GPUs) was the prominent hardware solution to accelerate deep learning. By design, GPUs work well with images, but also have inherent memory constraints that data scientists have had to work around when building some models.

Central processing units (CPUs), such as Intel Xeon Scalable processors, do not have such memory constraints and can accelerate complex, hybrid workloads, including larger, memory-intensive models typically found in medical imaging. For a large subset of AI workloads, CPUs can better meet the needs of data scientists as compared to GPU-based systems. Running healthcare deep learning workloads on CPU-based devices offers direct benefits to companies such as Philips as it allows them to offer AI-based services that do not drive up costs for their end customers.

“Intel Xeon Scalable processors appear to be the right solution for this type of AI workload. Our customers can use their existing hardware to its maximum potential, while still aiming to achieve quality output resolution at exceptional speeds,” said Vijayananda J., chief architect and fellow, Data Science and AI at Philips HealthSuite Insights.

Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Oxidized Zirconium Implant Material
OXINIUM

Print article

Channels

Surgical Techniques

view channel
Image: The wearable technology assesses surgeons’ posture during surgery (Photo courtesy of Baylor College of Medicine)

Wearable Technology Monitors and Analyzes Surgeons' Posture during Long Surgical Procedures

The physical strain associated with the static postures maintained by neurosurgeons during long operations can lead to fatigue and musculoskeletal problems. An objective assessment of surgical ergonomics... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.